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Figure 1. We focus on the problem of scene perception and forecasting for autonomous systems. As traditional methods rely on costly

human annotations, we look towards emerging self-supervisable and scalable tasks such as point cloud forecasting [11, 18,

]. However,

we argue that the formulation of point cloud forecasting unnecessarily focuses on learning the sensor extrinsics and intrinsics as part of
predicting future point clouds, whereas the only physical quantity of central importance to autonomous perception is future spacetime 4D
occupancy. We recast the task as that of 4D occupancy forecasting and show how using the same data as point cloud forecasting, one can
learn a meaningful and generic intermediate quantity — future spacetime 4D occupancy.

Abstract

Predicting how the world can evolve in the future is cru-
cial for motion planning in autonomous systems. Classi-
cal methods are limited because they rely on costly human
annotations in the form of semantic class labels, bounding
boxes, and tracks or HD maps of cities to plan their mo-
tion — and thus are difficult to scale to large unlabeled
datasets. One promising self-supervised task is 3D point
cloud forecasting [ 11, 18-20] from unannotated LiDAR se-
quences. We show that this task requires algorithms to im-
plicitly capture (1) sensor extrinsics (i.e., the egomotion
of the autonomous vehicle), (2) sensor intrinsics (i.e., the
sampling pattern specific to the particular LiDAR sensor),
and (3) the shape and motion of other objects in the scene.
But autonomous systems should make predictions about the
world and not their sensors! To this end, we factor out (1)
and (2) by recasting the task as one of spacetime (4D) oc-
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cupancy forecasting. But because it is expensive to obtain
ground-truth 4D occupancy, we “render” point cloud data
from 4D occupancy predictions given sensor extrinsics and
intrinsics, allowing one to train and test occupancy algo-
rithms with unannotated LiDAR sequences. This also al-
lows one to evaluate and compare point cloud forecasting
algorithms across diverse datasets, sensors, and vehicles.

1. Introduction

Motion planning in a dynamic environment requires au-
tonomous agents to predict the motion of other objects.
Standard solutions consist of perceptual modules such as
mapping, object detection, tracking, and trajectory fore-
casting. Such solutions often rely on human annotations
in the form of HD maps of cities, or semantic class labels,
bounding boxes, and object tracks, and therefore are diffi-
cult to scale to large unlabeled datasets. One promising self-
supervised task is 3D point cloud forecasting [11, 18-20].
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Figure 2. Points depend on the intersection of rays from the
depth sensor and the environment. Therefore, accurately predict-
ing points requires accurately predicting sensor extrinsics (sensor
egomotion) and intrinsics (ray sampling pattern). But we want to
understand dynamics of the environment, not our LiDAR sensor!

Since points appear where lasers from the sensor and scene
intersect, the task of forecasting point clouds requires algo-
rithms to implicitly capture (1) sensor extrinsics (i.e., the
ego-motion of the autonomous vehicle), (2) sensor intrin-
sics (i.e., the sampling pattern specific to the LiDAR sen-
sor), and (3) the shape and motion of other objects in the
scene. This task can be non-trivial even in a static scene
(Fig. 2). We argue that autonomous systems should focus
on making predictions about the world and not themselves,
since an ego-vehicle has access to its future motion plans
(extrinsics) and calibrated sensor parameters (intrinsics).

We factor out these (1) sensor extrinsics and (2) intrin-
sics by recasting the task of point cloud forecasting as one
of spacetime (4D) occupancy forecasting. This disentan-
gles and simplifies the formulation of point cloud forecast-
ing, which now focuses solely on forecasting the central
quantity of interest, the 4D occupancy. Because it is ex-
pensive to obtain ground-truth 4D occupancy, we “render”
point cloud data from 4D occupancy predictions given sen-
sor extrinsics and intrinsics. In some ways, our approach
can be seen as the spacetime analog of novel-view syn-
thesis from volumetric models such as NeRFs [12]; rather
than rendering images by querying a volumetric model with
rays from a known camera view, we render a LiDAR scan
by querying a 4D model with rays from known sensor in-
trinsics and extrinsics. This allows one to train and test
4D occupancy forecasting algorithms with un-annotated Li-
DAR sequences. This also allows one to evaluate and
compare point cloud forecasting algorithms across diverse
datasets, sensors, and vehicles. We find that our approach
to 4D occupancy forecasting, which can also render point
clouds, performs drastically better than SOTAs in point
cloud forecasting, both quantitatively (by up to 3.26m L1
error, Tab. 1) and qualitatively (Fig. 6). Our method beats
prior art with zero-shot cross-sensor generalization (Tab. 2).
To our knowledge, these are first results that generalize
across train/test sensor rigs, illustrating the power of dis-
entangling sensor motion from scene motion.

2. Related Work

Point Cloud Forecasting As one of the most promising
self-supervised tasks that exploit unannotated LiDAR se-
quences, point cloud forecasting [1 1, 18-20] provides the
algorithm past point clouds as input and asks it to predict fu-
ture point clouds as output. Traditionally, both the input and
the output are defined in the sensor coordinate frame, which
moves with time. Although this simplifies preprocessing by
eliminating the need for a local alignment, it forces the al-
gorithm to implicitly capture (1) sensor extrinsics (i.e., the
egomotion of the autonomous vehicle), (2) sensor intrinsics
(i.e., the sampling pattern specific to the particular LIDAR
sensor), and (3) the shape and motion of other objects in
the scene. We argue that autonomous systems should make
predictions about the world and not their sensors. In this pa-
per, we reformulate point cloud forecasting by factoring out
sensor extrinsics and intrinsics. Concretely, the new setup
asks the algorithm to estimate the depth for rays from future
timestamps. We show that one could use it as a proxy for
training and testing 4D occupancy forecasting algorithms.
Moreover, we demonstrate that one can evaluate existing
point cloud forecasting methods under this setup, allowing
4D occupancy forecasting algorithms to be compared with
point cloud forecasting algorithms.

Occupancy Forecasting Occupancy, as a predictive rep-
resentation complementary to standard object-centric repre-
sentations in the context of supporting downstream motion
planning, has gained popularity over the last few years due
to its efficiency in representing complex scenarios and in-
teractions. Most existing works on occupancy forecasting
focus on semantic occupancy grids from a bird’s-eye view
(BEV) [5, 10, 16]. They choose to focus on 2D for a good
reason since most autonomous driving planners reason in a
2D BEV space. A downside is that it is expensive to ob-
tain ground-truth semantic BEV occupancy for training and
testing algorithms. [7] claim that if we reduce our goal from
semantic occupancy to geometric occupancy, that is know-
ing if a location is occupied without asking which type of
object is occupying it, one could learn to forecast geometric
BEV occupancy from unannotated LiDAR sequences. In
this paper, we take the idea from [7] and go beyond BEV
— we propose an approach to learning to forecast 4D geo-
metric occupancy from unannotated LiDAR sequences. We
also propose a scalable evaluation to this task that admits
standard point cloud forecasting methods.

Novel View Synthesis We have seen tremendous progress
in novel view synthesis in the last few years [9, 12, [3]. At
its core, the differentiable nature of volumetric rendering
allows one to optimize the underlying 3D structure of the
scene by fitting samples of observations with known sen-



Historical LIDAR Sweeps Future 4D Occupancy

-
'!‘k* 5 77
\_/ t={1.T)

Learn Differentiably Render

(using known extrinsics and intrinsics)

t={1..T}

Future Point Clouds Groundtruth Point Clouds

\_/" t:‘{l...T}

Self-supervise

Figure 3. High-level overview of the approach we follow, closely inspired by a prior work [7]. Instead of directly predicting future
point clouds by observing a set of historical point clouds, we take a geometric perspective on this problem and instead forecast a generic
intermediate 3D occupancy-like quantity within a bounded volume. Known sensor extrinsics and intrinsics are an input to our method,
which is different from how classical point cloud forecasting is formulated. We argue that this factorization is sensible as an autonomous
agent plans its own motion and has access to sensor information. Please refer to our supplement for architectural details.

sor poses without explicit 3D supervision. Our work can be
thought of as novel view synthesis, where we try to synthe-
size depth images from novel views at future timestamps.
Thanks to motion sensors (e.g., IMU), one can assume that
relative LIDAR pose among frames in a log can be reliably
estimated. Our work also differs from common novel view
synthesis literatures in a few important aspects: (a) we use
an efficient feed-forward network to predict the spacetime
occupancy volume instead of applying test-time optimiza-
tion; (b) we optimize an explicit volumetric scene repre-
sentation (i.e., occupancy grid) instead of an implicit neu-
ral scene representation; (c) our approach relies on shape
and motion prior learned across diverse scenarios in order
to predict what happens next instead of reconstructing based
on samples only from a specific scenario.

3. Method

Autonomous fleets log an abundance of unannotated se-
quences of LiDAR point clouds X_p  r, where we also
estimate the relative sensor location for each frame o_.r.
Suppose we split such a sequence into a historic part X _7.g
and o_7.¢ and a future part X;.7 and o1.7.

Standard point cloud forecasting methods, denoted by
function g, take the historical sequence of point clouds
X_7.0 as input and try to predict the future sequence of
point clouds XLT.

X1 = g(X_71.0) (1)

To introduce our approach, we need to first re-
parametrize a point from the future LiDAR point cloud, say
x € X; wheret = 1...T, as aray that starts from the sen-
sor location oy, travels along the direction d, and reaches

the end point x after a distance of A:
x=o0;+ Ad,x € Xy 2)

Conceptually, our approach, denoted by function f,
takes a ray from a future timestamp ¢ parametrized by its
origin and direction (0, d), and tries to predict the distance
\ the ray would travel, based on historic sequence of point
clouds X _7.¢ and sensor locations o_7.g.

A= f(os,d; X_7.0,0_7.0) 3)

Intuitively, Eq. (3) is similar to view synthesis in
NEREF [12] except we are computing expected depth rather
than expected color. Below, we introduce how we formu-
late the differentiable volumetric rendering process and use
it for learning to forecast 4D occupancy.

Spacetime (4D) occupancy We define spacetime occu-
pancy as the occupied state of a 3D location at a particular
time instance. We use z to denote the true spacetime oc-
cupancy, which may not be directly observable due to line-
of-sight visibility constraints. Consider a bounded spatial-
temporal 4D volume, V, which is discretized into spacetime
voxels v. We can use

zlv] € {0, 1}, v = (z,9,2,1),v €V @

to represent the occupancy of voxel v in the spacetime voxel
grid V, which can be occupied (1) or free (0).

In practice, we learn an occupancy predictio network h
(parametrized by w) to predict discretized spacetime 4D oc-
cupancy given historic sequence of point clouds and sensor
locations,

z=h(X_1.0,0_7.0; W) )



Figure 4. We illustrate the process of rendering depth for a given
ray from the predicted occupancy grid. We assume that rays only
stop at the voxel boundary, which discretizes the output space into
a discrete set of events. We then compute the probability for a ray
stopping at each boundary intersection. Finally, we compute the
expected stopping distance.

where
z[v] € Ry 1] (6)

represents the predicted occupancy of voxel v in the space-
time voxel grid V. Please refer to the supplementary mate-
rials for network architecture details.

Depth rendering from occupancy Given a ray query
x = 0 + Ad, our goal is to predict A as close to \ as possi-
ble. We first compute how it intersects with the occupancy
grid by voxel traversal [2] (Fig. 4). Suppose the ray inter-
sects with a list of voxels {vy ... v, }. We discretize the ray
space by assuming that a ray can only stop at voxel bound-
aries or infinity. We interpret occupancy of voxel v; as the
conditional probability that a ray leaving voxel v;_; would
stop in voxel v;. We can write

i—1

pi = [[(1 —2lv;])z[vi] @)

j=1

where p; represents the probability that a ray stops in voxel
v;. Now we can render the distance by computing the stop-
ping point in expectation.

A= flo,d) =) piki 8)
i=1

where \; represents the stopping distance at voxel v;.

You may have noticed that Eq. (8) does not capture the
case where the ray stops outside the voxel grid, where the
stopping distance is ill-defined (it will stop at infinity). Dur-
ing training, we allow a virtual stopping point outside the
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Figure 5. Ray Clamping. First, we move the origin towards the
end point until the origin touches the volume or infinity. Then, we
move the end point towards the origin until the end point touches
the volume or infinity. At all times, we make sure the end point
stays ahead of the origin (like two rings on a string). Being inside
the volume counts as touching it.

grid at the ground-truth location, i.e.,
5‘ = f(O,d) = sz:\z + ]:[(]- 7pi)Xn+1 (9)
i=1 i=1
where 5\,,,4_1 =\

Loss function  We can train the occupancy prediction net-
work with a simple L1 loss between the rendered depth A
and the ground-truth depth A.

L(w) = >

(o,N\,d)e(X1.7,01.7)

IA— f(o,d; X_1.0,0_7:0, W)|
(10)

4. Evaluation

The golden standard for evaluating 4D occupancy fore-
casting would be to compare the predicted occupancy with
the ground-truth, but because it is extremely expensive to
obtain ground-truth 4D occupancy, we “render” future point
clouds from forecasted 4D occupancy with known sensor
intrinsics and extrinsics, use the quality of rendered future
point clouds as a proxy for that of forecasted 4D occupancy.

We introduce a new evaluation, where we factor out sen-
sor intrinsics and extrinsics such that algorithms can be
evaluated solely based on how well it captures how the
scene unfolds. We provide future rays as queries and ask
algorithms to provide a depth estimate for each query.

Given a query ray O(), there is a prediction ray OP,
where O represents the origin, () represents the ground-
truth end point, and P represents the predicted end point.

00 =0+ \d 11
OP —o+Ad (12)



Given such a pair of rays, we define the error ¢:

e=|0G 0P| = POl =]A-A (13

Near-field error Since LiDAR rays only travel through
freespace and terminate when reaching occupied surface,
there is a physical meaning behind the ¢ in Eq. (13). In
practice, occupancy and freespace prediction is only rele-
vant in regions that are reachable by the autonomous vehi-
cle in planning’s time hoziron. To reflect the focus on the
reachable regions, we propose an operation to clamp any
given ray XY to the fixed volume V. We call it ray clamp-

ing, denoted as ¢y : XY — X'Y” and illustrated in Fig. 5.
We define the near-field (bounded by volume V) predic-
tion error €y, as

ev = [¢v(0Q) — ¢(OP)| = |0'Q' — O'P'| = [P'Q|
(14)

Even though this metric penalizes disagreements of pre-
dicted depth along query rays within the bounded volume,
it does not capture the severity of a prediction error. In real-
world, one meter of an error close to the AV matters more.
To this end, we also propose using a relative near-field pre-
diction error 5’{,6[ defined as,

et _ 10v(0G) — 0v(OP) _ 1PQ)
06 00

The proposed evaluation requires one predicted ray for
every ground-truth ray (query). Any algorithms that are ca-
pable of rendering depth for a given ray by design meets
this requirement, including 4D occupancy forecasting from
Sec. 3. However, for point cloud forecasting algorithms,
the number of predicted points does not necessarily match
the number of ground-truth rays, plus there is no one-to-
one mapping between predicted and ground-truth points. To
resolve this discrepancy, we propose to fit a surface to the
predicted point clouds, on which we can query each ground-
truth ray, find its intersection with the fitted surface, and out-
put the (clamped) ray distance. In practice, we interpolate
depth among the spherical projections of predicted rays.

We also consider vanilla chamfer distance d (16) and
near-field chamfer distance dy, (17)

1 1
d= 5 ze;()rg; (=% [l5+ 577 > min x5 (16)
x xeX

(15)

where X, X represents the ground-truth, predicted point
cloud; N and M are their respective number of points.

Y min |[x—%[3
xeX

xeXy xeXv

1 , e 1
dV = IN’ Z )A(rg;glv ||X_X||2+2M/
xeXy

a7

where Xy, Xy, represents the ground-truth point cloud and
predicted point cloud within the bounding volume V; M’,
N’ are their respective number of points.

5. Experiments

Datasets We perform experiments on nuScenes [4],
KITTI-Odometry [3, 6] and ArgoVerse2.0 [20]. nuScenes
[4] is a full-suite autonomous driving dataset with a total of
1,000 real-world driving sequences of 15s each. KITTI [6]
is also a multi-sensor dataset with 6 hours of diverse driving
data across freeways and urban areas. KITTI-Odometry is a
subset of this KITTI dataset where sequences have accurate
sensor poses. ArgoVerse2.0 [20] contains the largest set of
unannotated LiDAR sequences. Please see the supplemen-
tary material for results on ArgoVerse2.0.

Setup We consider a bounded area around the au-
tonomous vehicle: -70m to 70m in the x-axis, -70m to 70m
in the y-axis and -4.5m to 4.5m in the z-axis in the nuScenes
coordinate system. This is our 4D volume V, described in
Sec. 3. We follow the state-of-the-art in point cloud fore-
casting and evaluate forecasting in a 1 second horizon and
a 3 second horizon. We adopt the same setup as prior meth-
ods [18, 19]. On nuScenes, for 1s forecasting,, we take 2
frames of input and 2 frames of output at 2Hz; for 3s fore-
casting, we take 6 frames of input and 6 frames of output
at 2Hz. For all other datasets, we always take 5 frames of
input and 5 frames of output for both 1s and 3s forecasting.

Baselines First, we construct an aggregation-based ray-
tracing baseline (similar to [11]). Specifically, we pop-
ulate a binary occupancy grid given the aligned LiDAR
point clouds from the past and present timesteps and use
it for querying ground-truth rays. In addition to this, we
compare our 4D occupancy forecasting approach to state-
of-the-arts (SOTASs) in point cloud forecasting, including
SPENet [19] and S2Net [18] on the nuScenes dataset,
and ST3DCNN [11] on the KITTI-Odometry dataset. For
SPFNet [19] and S2Net [18], we are able to obtain the raw
point cloud predictions from the authors and evaluate the
results on the new metrics. For fair comparison, the S2Net
results are based on a single sample from their VAE. For
ST3DCNN [11], we retrain their models for 1s and 3s fore-
casting. In addition, the state-of-the-art approaches (bar-
ring ST3DCNN) tend to predict a confidence score for each
point, indicating how valid the predicted point is; we eval-
uate the predicted point cloud both with and without con-
fidence filtering, with a recommended confidence threshold
at 0.05 [18, 19]. Quantitative and qualitative results with
confidence filtering can be found in the supplement.
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Figure 6. Qualitative results. We compare the point cloud forecasts of S2Net [ 18], SPFNet [19] and the raytracing baseline on the nuScenes
dataset with our approach on three different sequences at different time horizon. Our forecasts look significantly crisper than the SOTA.
This demonstrates the benefit of learning to forecast spacetime 4D occupancy with sensor intrinsics and extrinsics factored out. We also
visualize the forecasted 4D occupancy at the corresponding future timestamp. As compared to simple aggregation-based raytracing, we
are able to spacetime-complete 4D scenes. We highlight some potential applications in Fig. 7 and Fig. 8. We visualize a render of the

predicted occupancy and the color encodes height along the z-axis.

Chamfer Distance (m?)

Method Horizon L1 (m) AbsRel (%) Near-field Vanilla
Is 3.49 28.38 1.70 275
S2Net [1] 3 478 30.15 2.06 347
1s 4.58 34.87 2.24 4.17
SPENet[19] 5 5.11 3274 250 4.14
Rav tracin 1s 1.50 14.73 0.54 0.90
Y e 3s 2.44 26.86 1.66 3.59
our Is 1.40 10.37 1.41 2.81
urs 3s 1.71 13.48 1.40 431

Table 1. Results on nuScenes [4]. We see that the conclusions
made from the proposed metrics are more in line with the qual-
itative results in Fig. 6. This reiterates the need for metrics that
intuitively evaluate the underlying geometry of the scene instead
of uncorrelated samples of the scene (e.g., points in space).

Qualitative results on nuScenes We compare the fore-
casted point clouds from our 4D occupancy forecasting ap-
proach to SOTA on point cloud forecasting in Fig. 6, where
we see a drastic difference in how the predicted point clouds
look like. Our forecasts look significantly more representa-
tive of the scene geometry compared to SOTA. This demon-
strates the benefit of learning to forecast spacetime 4D oc-
cupancy with sensor intrinsics and extrinsics factored out.
Surprisingly, we find that aggregation-based raytracing is
a competitive baseline, qualitatively better than the SOTA.

Train . Chamfer Dist. (m?)
Method set Horizon L1 (m) AbsRel (%) Near-field  Vanilla
Is 3.13 26.94 4.11 451
STSDCNNTII]  KITTI-O 3s 325 28.58 4.19 483
Is 112 9.09 0.51 0.61
Ours KITTI-O 3s 145 12.23 0.96 1.50
Rav traci Is 1.50 16.15 0.62 0.76
ay tracing 3s 2.82 29.67 4.01 592
Is 171 14.85 252 318
Ours AV2 3s 2.52 23.87 483 579
00 Is 1.25 9.69 1.95 227
20%
Ours KITTI-O 3 170 14.09 409 5.00
AV2 + Is 1.19 9.30 0.54 0.64
Ours 20%
KITTI-0®% 35 1.67 13.40 1.24 1.80

Table 2. Performance as a function of the available target dataset
(in this case, KITTI-Odometry). With access to all of KITTI-
O (top), our method outperforms the SOTA. With no access to
KITTI-O (i.e. zero-shot sensor generalization in the middle), our
method trained on AV2 outperforms the ray tracing baseline at 3s,
though the baseline fares well at 1s. Note that both approaches
still beat the SOTA [ 1] by a large margin. Finally, with access to
only 20% of KITTI-O (bottom), our method fares quite well, par-
ticularly when trained on both AV2 and KITTI-O. Cross-dataset
generalization and training is made possible by disentangling sen-
sor intrinsics/extrinsics from scene motion.

However, in addition to this aggregation, our approach is
also able to hallucinate or spacetime-complete both the fu-
ture motion of dynamic objects and the occluded parts of the



static world. We also visualize the 3D forecasted occupancy
at corresponding timestamps that our approach predicts “for
free”. Please refer to the caption for more details.

Results on nuScenes with new metrics We compare our
4D occupancy forecasting to SOTA on point cloud forecast-
ing in terms of depth error along the future rays, following
the evaluation protocol outlined in Sec. 4. We find that the
4D occupancy forecasting approach outperforms all base-
lines by significant margins in both 1s and 3s forecasting,
reducing both the L1 and the absolute relative error by more
than half, compared to the state-of-the-art methods on point
cloud forecasting. The improvements here are consistent
with the qualitative results in Fig. 6. As noted before, the
raytracing baseline performs better than SOTA.

Results on nuScenes with old metrics We also evaluate
by both vanilla (16) and near-field chamfer distance (17)
following the protocol in Sec. 4. Our approach shines in
terms of near-field chamfer distance. One contributing fac-
tor could be that our approach is specifically optimized for
capturing occupancy evolution in the near field. In addi-
tion, S2Net [ | 8] outperforms us in terms of vanilla chamfer
distance, which is not surprising since we are incapable of
deciding where rays end outside the predefined voxel grid.

Results on KITTI-Odometry Next, we use KITTI-
Odometry to test our method in different settings with lim-
ited access to the target dataset. This mimics the setting
where a next-generation sensor platform may be gradu-
ally integrated into fleet operations. Tab. 2 shows that
with access to the full target dataset (KITTI-Odometry) for
training, our method resoundingly outperforms the SOTA
ST3DCNN [11]. Next, if no samples from the target dataset
are available, one can employ either a non-learnable method
such as our raytracing baseline, or one may pretrain on
a (large) dataset with a different sensor platform. To this
end, we find that our method trained on ArgoVerse2.0 out-
performs the SOTA on KITTI-Odometry, while also out-
performing raytracing baseline for long-horizon (3s) fore-
casting. Finally, with access to only 20% of KITTI-
Odometry, our method pretrained on ArgoVerse2.0 and
finetuned on KITTI-Odometry outperforms the alternatives.
To our knowledge, these are the first results in sensor trans-
fer/generalization that illustrate the power of disentangling
sensor extrinsics/intrinsics from scene motion. Please see
qualitative results in the supplement.

5.1. Architecture ablations

Here, we explore two other variants of our architecture:
a static variant that predicts a single voxel grid for all fu-
ture timesteps, and a residual variant that predicts a single

B 2
Arch. Horizon LI (m) AbsRel (%) Cramfer Distance (m?)

Near-field Vanilla
S 1s 1.28 9.27 1.03 341
3s 1.73 13.54 1.40 3.73
D 1s 1.40 10.37 141 2.81
3s 1.71 13.48 1.40 4.31
S+R 1s 1.34 9.73 1.00 3.20
3s 1.82 13.84 1.52 3.54

Table 3. We evaluate two variants of the proposed dynamic (D) ar-
chitecture using the geometry forecasting metrics - static (S) and
residual (S+R). We find that the static variant is a powerful base-
line that beats our dynamic approach for 1s forecasting and by
extension, the state-of-the-art.

static voxel grid with residual voxel grids for each output
timestep. We evaluate these variants on nuScenes.

The main observation is that the static variant is a pow-
erful baseline for short-horizon forecasting. This is because
a single voxel grid serves as a dense static map of the local
region, and since an extremely high majority of the world
remains static, this is expected to be a reasonable baseline
for short-horizon forecasting. Note that this variant is still
stronger than the ray tracing baseline in Tab. 1 because of
its ability to hallucinate occluded parts of the world. On
the other hand, the proposed dynamic variant (which pre-
dicts one voxel grid per future timestep), performs the best
at long-horizon forecasting. With the residual variant, our
hope was to separate dynamic scene elements from static
regions, but in practice this decomposition fails as there is
not enough regularization to force motion-based separation.

Since, the static variant outperforms the state-of-the-
art on 1s forecasting, we analyse these variants further in
the supplement by using the segmentation annotations on
nuScenes-LiDARSeg [ 1] and computing the proposed met-
rics separately on foreground and background points. This
helps us understand which regions in the scene contribute
the least to the performance of these variants.

5.2. Applications

Generalization across sensors In Fig. 7 (captioned as
new intrinsic-view synthesis), we show how one can render
point clouds as if they are captured by different LiDAR sen-
sors from the same predicted future occupancy. Typically,
different LiDAR sensors exhibit different ray patterns when
sensing. For the case shown, the nuScenes LiDAR is an
“in-domain” sensor, i.e., the occupancy grid was predicted
by a network learned over LiDAR sweeps captured by a
nuScenes LiDAR. The KITTI and ArgoVerse LiDARs are
“out-of-domain”. We hope that learning of such a generic
representation allows methods in sensor domain transfer
[8,21] to look at the task from the perspective of space-
time 4D occupancy. The formulation we have laid out also
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Figure 7. Novel intrinsic-view synthesis We show how to simulate different LIDAR ray patterns on top of the same learned occupancy
grid. In this case, the future occupancy is predicted with historic LIDAR data scanned by nuScenes LiDAR (Velodyne HDL32E). First, we
show the rendered point cloud under the native setting. Then, we show the rendered point cloud for KITTI LiDAR (Velodyne HDL64E, 2x
as many beams). Finally, we have the rendered point cloud for Argoverse 2.0 LiDAR (2 VLP-32C stacked on top of each other). The fact
that we can forecast occupancy on top of data captured by one type of sensor and use it to simulate future data for different sensors shows
how generic the forecasted occupancy is as a representation. We support this generalization quantitatively in Tab. 2.

t=0s t=0.5s t=2s

Figure 8. Novel extrinsic-view synthesis Dense depth maps rendered from the predicted future 4D occupancy from novel viewpoints. To
render these depth maps, we take a novel future trajectory of the egovehicle. Placing the camera at each of these locations, always facing
forward into the voxel grid (shown in the future dotted red trajectory on the left), gives us a camera coordinate system in which we can
shoot rays from the camera center to every pixel in the image, and further beyond into the 4D occupancy volume. Every pixel represents
the expected depth along its ray. The RGB image at ¢ = 0Os is shown as reference and is not used in this rendering. For the depth maps,
darker is closer, brighter is farther. Depth on sky regions is untrustworthy as no returns are received for this region from the LiDAR sensor.

makes it easy to train across different datasets, making zero-
shot cross-dataset transfer possible for LIDARs [14, 15]. In
the previous section and in Tab. 2, we highlight the first re-
sult in this direction, where our method trained on the Argo-
Verse2.0 dataset when tested on KITTI-Odometry beats the
prior art [| 1] on KITTI-Odometry. Furthermore, our pro-
posed disentangling also allows for multi-dataset training,
for which we point the readers to the supplement.

Novel view synthesis In Fig. 8 (captioned as new-
extrinsic view synthesis), we show dense depth maps ren-
dered from our learnt occupancy grid using novel ego-
vehicle trajectories or viewpoints. Such dense depth of a
scene is not possible to get from existing LiDAR sensors
that return sparse observations of the world. Although clas-
sical depth completion [17] from sparse LiDAR input exists
as a single-frame (current timestep) task, here we note that
with our representation, it is possible to densify sparse Li-
DAR point clouds from the future, with such rendered depth
maps backprojected into 3D. This dense 360° depth is eval-

uated on sparse points (with the help of future LiDAR re-
turns) by our proposed ray-based evaluation metrics.

6. Conclusion

In this paper, we propose looking at point cloud forecast-
ing through the lens of geometric occupancy forecasting,
which is an emerging self-supervised task [7], originally set
in the birds’-eye-view but extended to full 3D through this
work. We advocate that this shift in viewpoint is neces-
sary for two reasons. First, this shift helps algorithms fo-
cus on a generic intermediate representation of the world,
i.e. its spatiotemporal 4D occupancy, which has great po-
tential for downstream tasks. Second, this “renovates” how
we formulate self-supervised LiDAR point cloud forecast-
ing [11, 18, 19] by factoring out sensor extrinsics and in-
trinsics from the learning of shape and motion of different
scene elements. In the end, we reiterate that the two tasks in
discussion are surprisingly connected. We propose an eval-
uation protocol, that unifies the two worlds and focuses on
a scalable evaluation for predicted geometry.
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