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Abstract

We present an efficient probabilistic algorithm for the concurrent mapping and
localization problem that arises in mobile robotics. The algorithm addresses
the problem in which a team of robots builds a map online, while simultane-
ously accommodating errors in their odometry. At the core of the algorithm is
a technique that combines fast maximum likelihood map growing with a Monte
Carlo localizer that uses particle representations. The combination of both
yields an online algorithm that can cope with large odometric errors typically
found when mapping environments with cycles. The algorithm can be imple-
mented distributedly on multiple robot platforms, enabling a team of robots to
cooperatively generate a single map of their environment. Finally, an extension
is described for acquiring three-dimensional maps, which capture the structure
and visual appearance of indoor environments in 3D.

1 Introduction

The problem of robot mapping has received considerable attention over the past
two decades. Mapping is the problem of generating models of robot environments
from sensor data. The importance of the problem is due to the fact that many
successful mobile robot systems require maps for their operation. Examples in-
clude the Helpmate hospital delivery robot [43], Simmons’s Xavier robot [79], and
various museum tour-guide robots [5, 36, 63, 86]. Consequently, over the last
decade, there has been a flurry of work on map building for mobile robots (see
e.g., [11, 50, 69, 88]). Some approaches seek to devise abstract, topological descrip-
tions of robot environments [4, 13, 47, 57], whereas others generate more detailed,
metric maps [11, 25, 32, 54, 59]. Naturally, the problem of mapping lends itself
nicely to multi-robot solutions, where multiple robots collaborate and jointly ex-
plore unknown environments.

In this paper, we will be interested in the problem of building detailed metric
maps online, while the robot is in motion. The online characteristic is important for



a range of practical problems, such as the robot exploration problem, where mapping
is constantly interleaved with decision making as to where to move next [8, 80]. To
map an environment, a robot has to cope with two types of sensor noise: Noise in
perception (e.g., range measurements), and noise in odometry (e.g., wheel encoders).
Because of the latter, the problem of mapping creates an inherent localization prob-
lem, which is the problem of determining the location of a robot relative to its
own map. The mobile robot mapping problem is therefore often referred to as the
concurrent mapping and localization problem (CML) [51], or as the simultaneous
localization and mapping problem (SLAM) [9, 21]. In fact, errors in odometry ren-
der the errors of individual features in the map dependent even if the measurement
noise is independent, which suggests that mapping is a high-dimensional statistical
estimation problem, often with tens of thousands of dimensions.

Past work on the concurrent mapping and localization problem has led to two
distinct families of approaches, each of which possesses unique advantages and defi-
ciencies:

1. The first family, for historical reasons often referred to as SLAM algorithms [10,
21, 51], relies on the extended Kalman filter to estimate joint posteriors over
maps and robot poses. These approaches provide a sound, online solution to
the mapping problem when applicable. However, the use of unimodal Gaus-
sian posteriors inherent in the extended Kalman filter stipulates a range of
restrictions. The most important restriction is that the correct associations
between measurements and features in the map must be known. For this to
be the case, features in the environment must possess unique signatures that
enable the robot to disambiguate them. In practice, this is rarely the case
(see [15] for a notable exception). Many implementations therefore rely on
maximum likelihood data association methods, which tend to work well when
pose errors are small [54], but are brittle in the face of larger errors. Such is
usually the case in cyclic environments, where a robot’s pose error can grow
without bounds when traversing a cycle. In particular, we note that SLAM
algorithms are incapable of generating some of the larger maps shown in this

paper.

2. The second family of approaches is based on Dempster’s ezpectation maxi-
mization, or EM algorithm [20]. Examples include [7, 19, 76, 77, 88]. EM
approaches overcome the data association problem by performing hill-climbing
search in the space of all maps in a way that constantly refines the estimated
data association. They have successfully been applied to mapping large cyclic
environments with highly ambiguous features. However, they are inherently
batch algorithms, requiring multiple passes through the entire data set. As a
consequence, they are not applicable to online mapping problems.

This paper seeks to combine the best of both worlds. We propose an online algorithm
that builds maps from raw range measurements, without the need for exact data as-



sociation. Our work addresses four important open problems in online mapping: the
problem of mapping with unknown data associations and raw sensor measurements,
the problem of mapping cyclic environments, the problem of generating maps col-
laboratively with multiple robots, and the problem of generating three-dimensional
maps of building interiors.

Our approach, which was originally described in [87], is similar to recent work by
Gutmann and Konolige [33]. The core of this paper presents a statistical framework
that combines an incremental maximum likelihood estimator with a posterior pose
estimator. More specifically, maps are generated online by finding the most likely
continuation of the previous maps under the most recent sensor measurement. How-
ever, while online, such a methodology is prone to failure when mapping a cycle,
due to the larger pose error that the robot might have accrued. If the error in pose
estimation is large, backwards-correction of past estimates might be required. To
overcome this problem, we propose a second estimator for the residual uncertainty
in the robot’s pose. This estimator calculates a full posterior over poses (but not
maps!), using particle representations. When closing the cycle, this estimate is used
to determine the robot’s pose relative to its own map, and to correct pose estimates
backwards in time to resolve inconsistencies. The resulting mapping algorithm is
shown to perform favorably in a range of challenging mapping problems. Moreover,
it is easily extended into a modular multi-robot mapping approach, where multiple
robots integrate sensor measurements into a single, global map. However, it also
possesses a range of limitations, which will be discussed in due course.

Building on the basic algorithm, this paper also describes an extension that
generates 3D maps, reflecting the structural and optical appearance of a building’s
interior. 3D maps are generated from a panoramic camera and a laser range sensor
mounted perpendicular to the robot’s motion direction. They are represented in a
standard virtual reality format (VRML), thereby enabling people to interactively
‘fly through’ an environment from a remote location.

The paper is organized as follows. We begin with introducing the basic statistical
framework, which encompasses virtually all major probabilistic mapping algorithms
in the literature. From there, we develop the specific set of estimators, making ex-
plicit the various assumptions and approximations necessary to obtain a working
online algorithm. The algorithm is then extended into a scalable multi-robot map-
ping algorithm, which under specific initial conditions is shown to enable teams of
robots to build accurate maps. Finally, we describe our approach to generating maps
in 3D and show results of mapping a corridor segment in our university building.
The paper is concluded with a discussion of limitations, related work, and research
opportunities that arise from this work.



2 Bayesian Methods for Concurrent Mapping and Lo-
calization

2.1 Bayes Filters

Bayes filters comprise a popular class of Bayesian estimation algorithms that are in
widespread use of robotics and engineering. They are also at the core of virtually any
successful CML/SLAM algorithm [85]. Special versions of Bayes filters are known
as Kalman filters [41], hidden Markov models [68, 67], particle filters [22, 23, 52, 66],
and dynamic belief networks [16, 44, 73]. The classical probabilistic occupancy
grid-mapping algorithm [25, 59] is also a (binary) Bayes filter.

Bayes filters address the problem of estimating the state of a time-varying (dy-
namic) system—such as a mobile robot—from sensor measurements. Let us denote
the state of the environment by z; the state at time ¢ will be denoted x;. Further-
more, let us denote measurements by z, and the measurement at time ¢ by z;. In
time-varying systems (and in robotics in particular), the change of state is often
a function of the controls. Controls will be denoted by u. The control at time
t, u;, determines the change of state in the time interval (¢,¢ + 1]. The set of all
measurements and controls will be referred as data and denoted by d:

d = {20, w0, 21, U1,---, 2t} (1)

Without loss of generality, we assume that controls and measurements are alternated.
Following standard notation, we adopt the subscript ; to denote to an event at time
t, and the superscript ! to denote to the set of all events up to and including time ¢.

The Bayes filter calculates the posterior probability p(x;|d’) of the state z; con-
ditioned on the data leading up to time ¢. It does so recursively, i.e., the estimate
p(z¢|d?) is calculated from the previous posterior p(z;_1|d'~!) using only the most
recent control u;_; and sensor measurement z;. Once processed, data can be dis-
carded. Hence the time required to calculate p(z;|d’) does not depend on the size
of the data set. This online property makes Bayes filters well suited for a range of
robotic estimation problem, such as the concurrent mapping and localization prob-
lem discussed here.

The recursive update equation of the Bayes filter is as follows:

p(zld') = P(Zt|$t)/p($t|ut—1,€6t—1) p(zi—1]d™t) dziy (2)

Thus, the desired posterior p(z¢|d’) is obtained from the estimate one time step
earlier, p(z;_1|d'!), after incorporating the control u;_; and the measurement z;.
The nature of the conditional probabilities p(z;|z;) and p(z¢|us_1, x4 1), which play
an essential role in this recursive estimator, will be discussed in Section 2.3 further
below.



We will now derive Equation (2), similar to derivations that can found in text-
books on probabilistic inference [73]. Bayes filters owe their validity a specific as-
sumption concerning the nature of the environment, called the Markov assumption.
The Markov assumption states that given knowledge of the current state, the future
is independent of the past. In particular, this implies that the posterior estimate
p(x¢|d’) is a sufficient statistics of past data, with regards to prediction. This as-
sumption is true for environments in which z is the only state of the environment
that might possibly affect multiple measurements. In static environments, the state
comprises the robot pose and the shape of the environment itself. This suggests
that the Markov assumption holds true in the concurrent mapping and localization
problem. Clearly, in crowded environments the assumption is violated unless people
are included in the state z. This case is therefore not addressed in the framework
presented here—see [5] for techniques to accommodate people in the context of state
estimation.

To derive Bayes filters, we notice that the desired posterior can be written as

p(zild) = plailze, ur,d") (3)
Applying Bayes rule leads to
= np(z|ze, w1, d ) plagug 1, d ) (4)

where 7 is a normalizer. The Markov assumption allows us to simplify the term
p(2z¢|my, ug—1,d 1), which leads to the more convenient form

= 0 p(z|ws) pladus—1,d) (5)
Next, we integrate the second term over the previous state z; 1, which gives us
= 1 p(at|zr) /P($t|ut71,dt_1,$t71) p(me1lug1,d") day 4 (6)

Exploiting the Markov assumption once again, we obtain the simplified form

= 1 p(2t|®t) /p($t|ut717$t71) p(zi_1|d 1) dopq (7)

which completes the derivation of the Bayes filter, as stated in Equation (2).

2.2 Concurrent Mapping and Localization

In concurrent mapping and localization, the state x comprises the (unknown) map
of the environment and the pose of the robot. Let us denote the map by m and the
pose by s. Then we have

z = (m,s) (8)



This gives rise to the following filter, which describes the problem of concurrent
mapping and localization in Bayesian terminology:

p(St,mt\dt) = np(zt|3tamt)//p(st,mt|ut—1a3t—1amt—1)
p(st—1,my—1|d"" 1) dsy—1 dmy_q 9)

This equation is obtained by substituting (8) into (2).

If the environment does not change over time, which is commonly assumed in the
literature on concurrent mapping and localization, we have m; = m;_1. Hence, the
term p(s, my|ug—1,8¢—1,my—1) is only non-zero if my = m;_1, and the integration
can be omitted:

= Up(zt\st,mt)/p(8t|ut—1,3t—1,mt—1) p(st—1,my—1|d" 1) ds;—1 (10)

Stripping the map m of its time index leads to

p(st,m|d") = Up(zt|5t>m)/p(5t|ut—1a5t—1am)p(st—1>m|dt_1)dSt—l (11)

It is also common, but not essential, to assume that the effect of robot motion does
not depend on the map m. This leads to the recursive estimator:

p(stam|dt) = np(zt|5t>m)/p(3t|ut—1a3t—1)p(St—1>m|dt_1) dst—1 (12)

This important equation is at the heart of all state-of-the-art concurrent mapping
and localization algorithms. Virtually all such algorithms can be directly derived
from this equation (see also [85]).

Unfortunately, the computation of the joint posterior over poses and maps is
usually intractable in the context of concurrent mapping and localization, due to the
high dimensionality of the space of all maps. Hence, all existing approaches make
further restrictive assumptions. The SLAM family of approaches [21, 50, 62, 82], to
date the only approach that implements the full posterior calculation as specified in
Equation (12), assumes Gaussian-distributed noise and local-linear perception and
motion models. Under these assumptions, the posterior can be computed exactly
using the extended Kalman filter, transforming the exponentially hard problem into
one that scales quadratically in the size of the environment [61, 62]. However,
the Gaussian noise assumption has important ramifications in practice, some of
which were already discussed in the introduction to this paper. Among others, it
requires that sensor measurements can be uniquely associated with objects in the real
world. In addition, handling moderate numbers of features (e.g., 1,000) is typically
intractable with Kalman filters. These limitations motivate the development of
alternative approaches that do not calculate the full posterior, such as the method
presented in this article.
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Figure 1: The motion model: Posterior distributions of the robot’s pose upon executing the control
illustrated by the solid line. The darker a pose, the more likely it is. Poses are projected into 2D,
ignoring the robot’s heading direction.

2.3 Probabilistic Models

To implement the recursive update equation (12), we need three quantities: a
distribution p(sg,m) for initializing the filter, and the conditional distributions
p(st|us—1,5¢—1) and p(z¢|st,m). The latter distributions are often referred to as
motion model and measurement model, respectively, since they physically model
robot’s motion and its sensors.

The initial distribution in mapping is straightforward. Without loss of generality,
the pose s is defined to be the origin of the coordinate system with a heading
direction of 0 degrees, that is, s = (0,0,0). The map m is initialized with a
uniform prior.

The motion model, p(s¢|u¢—1, si—1), specifies the probability that the robot’s pose
is s¢ given that it executed the control w;—; at time ¢ — 1. Thus, the motion model
is a probabilistic generalization of mobile robot kinematics. Classical kinematics
specifies where one would expect a robot to see if its control and its motion were
perfect. In practice, physical robots often suffer from drift and slippage, which
induce deviations from the expected pose that are difficult to predict. Hence, the
pose s; is best modeled by a probability distribution over possible poses that the
robot might attain after executing u;_1 in s;_1.

In our implementation, we assume that the robot experiences translational and
rotational error. For a small motion segment (e.g., the distance a robot traverses
in .25 seconds), we assume that these errors can be modeled by two independent
Gaussian noise variables, which are added to the commanded translation and rota-
tion. Figure 1 shows two examples of the probabilistic motion model p(s¢|us—1, s1—1)-
In both cases, the robot’s pose prior to executing the control is shown on the left.
The robot is then commanded to follow a straight-line motion as indicated. The
posterior pose after executing the respective motion command is shown in Figure 1,
as indicated by the grayly shaded area. The darker a pose, the more likely it is.
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Figure 2: (a) Two laser range scans projected into an occupancy grid map. (b) Probabilistic
measurement model for an example range scan, which assigns likelihood in proportion to how close
to the scan a non-occluded object was observed.

Obviously, the densities in Figure 1 are only two-dimensional projections of the
three-dimensional densities in pose space. A careful comparison of the two diagrams
in Figure 1 shows that the control matters. Both examples show a control sequence
that lead to the same expected pose, as predicted by classical kinematics. However,
the path in the right diagram is longer, inducing more chances of errors as indicated
by the increased margin of uncertainty.

The measurement model, p(z;|s¢, m), physically models the robot’s sensors. Un-
der the assumption that the map m and the robot pose s; is known, the measurement
model specifies the probability that z; is measured. While the mathematical frame-
work put forward in this paper makes no specific assumption on the nature of the
sensors, we will consider robots equipped with 2D laser range finders. Such laser
range finders are commonly used in mobile robotics. Figure 2a shows a range scan
from a bird’s eye perspective, of a range finder mounted horizontally on a mobile
robot. Each line indicates the range, as measured by the sensor. Also shown is an
outline of the environment, which suggests that the range measurements are of high
quality.

The measurement model adopted in our implementation is a probabilistic gen-
eralization of the rich literature on scan matching [34, 54, 74]. It assumes that each
scan induces a local map, which can be conceptually decomposed into three types of
areas: free space, occupied space, and occluded space. The same conceptual decom-
position applies to the map. Each of the measurements in a range scan z; can thus
fall into three different regions of the map. If it falls into occluded (unknown) space,
the probability is uniformly high. If it coincides with occupied space, the probability
is high, too. The most interesting case occurs when it falls into free-space, which can
be viewed as an inconsistency. The specific probability of the measurement is then
given by a function that decreases monotonically with the distance to the nearest



object. The specific function in our implementation is composed by a normal (close
range) and a uniform (far range) distribution. It levels off at approximately 1 meter
distance, assigning equally low probability to measurements further away. The lev-
eling is important for the gradient ascent search algorithm described further below,
as it effectively removes outliers when determining the most likely robot pose.

Figure 2b shows an example. Shown there is a sensor scan (endpoints only) for a
robot placed at the left of the diagram (circle). Gray shading indicates the likelihood
function: the darker a region, the smaller the likelihood for sensing an object there.
Notice that occluded regions are white (and hence incur no penalty).

The likelihood computation is performed symmetrically: First, the likelihood
of individual measurements in a scan is evaluated relative to the map. Then, the
likelihood of obstacles in the map is calculated relative to the scan. The symmetric
computation ensures that occluded measurements are matched to the ‘correct’ wall.
The result of the calculation are a collection of probabilities p(zgi] |st, m), where zy]
denotes measurement likelihood obtained from the ¢-th measurement or map object.
The resulting probabilities are them multiplied, assuming conditional independence
between the measurements:

plalstm) = [[p(z"|se,m) (13)

Our implementation precomputes the nearest neighbor for a grid (e.g., 15 cm reso-
lution). Our implementation also caches trigonometric functions that are expensive
to compute, such as sine and the cosine of specific angles. As a result, calculating
the measurement model p(z¢|s;,m) is extremely fast. It takes approximately one
millisecond on a 500Mhz Pentium PC for a full scan.

3 Mapping Through Incremental Likelihood Maximiza-
tion

3.1 Maximum Likelihood Pose Estimation

As pointed out repeatedly already, computing the full posterior (12) over maps and
poses is computationally hard. Even discrete approximations scale exponentially
with the size of the map. The exponential scaling can be avoided in cases where the
data association is known. However, in most cases the data association is unknown
and computing the full posterior online appears to be intractable given today’s
computers.

We will now discuss a first online algorithm for building maps. This algorithm
by itself is non-probabilistic and brittle; however, it forms the basis of a new proba-
bilistic algorithm presented in this paper. The idea is simple, and probably because
of its simplicity it is very popular: Given a scan and an odometry reading, determine



the most likely pose. Then append the pose and the scan to the map, and freeze it
once and forever.

Put mathematically, the idea of the incremental maximum likelihood approach
is to calculate a sequence of poses

81,89, .. (14)

and corresponding maps by maximizing the marginal likelihood of the ¢-th pose and
map relative to the (¢ — 1)-th pose and map. To do so, the approach assumes we
have at our fingertips a function for building maps incrementally, which requires
knowledge of the robot’s poses. Let us denote this function by 72, and call it the
incremental map updating function:

m(s’,z") = argmaxp(m|s’,2) (15)
m

Functions of this type have been defined in many different ways. In occupancy grid
mapping [25, 59], m(st, z') is simply the update equation for the occupancy grid
map. In [90, 55, 32], maps are collections of scans annotated by their pose. Hence,
an appropriate map update function 7 simply appends a scan and a pose to the set
of scans which comprise the map. This is also the approach taken in this paper.

The availability of the incremental map updating function reduces the problem
of estimating posteriors over the product space of maps and poses to the simpler
problem of estimating poses only:

plsem(s', 2)|d") = plafse, (s, 2471) (16)

/P(8t|ut—1,5t—1) p(si—1, (s, 271" h) dsyq

This equation is obtained by substituting 7 for m in Equation (12). The incremental
maximum likelihood approach calculates at each time step one particular pose, §,
instead of computing the full posterior. From this estimate, it uses the function m to
obtain a single map. Thus, the posterior (16) can be simplified. Instead of assuming
the only the posterior over maps and poses at time ¢ — 1 is known, we make the
(much stronger) assumption that we know the pose and the map: The pose at time
t —11is §;_1, and the map is (871, 2%). Hence we can re-write (16) as follows:

p(se,m(3 " s, 2)|d") = plzelse, m(3",2"71)) plselue—1,8-1) (17)

In particular, we notice that the integration over poses disappeared (c.f., Equation
(12). The t-th pose is now obtained as the maximum likelihood estimate of (17):

8 = argmaxp(zﬂst,m(ét_l,zt_l))p(st|ut_1,§t_1) (18)
5t

The estimated pose §; is then used to generate a new map via the incremental map
updating function 77, and the new map is used from that point on.
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To summarize, at any point in time ¢ — 1 the robot is given a (non-probabilistic)
estimate of its pose §;_1 and a map ﬁz(hatst_l,zt_l). As a new control u;_1 is
executed and a new measurement z; is taken, the robot determines the most likely
new pose §;. It does this by trading off the consistency of the measurement with
the map (first probability on the right-hand side in (18)) and the consistency of the
new pose with the control action and the previous pose (second probability on the
right-hand side in (18)). The result is a pose §; that maximizes the incremental
likelihood function. The map is then extended by the new measurement z;, using
the pose §; as the pose at which this measurement was taken. Again, this is a formal
description of the intuitive (and popular) idea of building maps incrementally, by
determining the most likely pose §; and extending the map accordingly.

3.2 Search in Pose Space

We now discuss how to find the most likely pose §;, that is, how to compute (18). The
basic problem is the continuous nature of the space of all robot poses, which makes
it impossible to search this space exhaustively. In our approach, §; is found using
gradient ascent in log likelihood space. It is common practice to maximize the log
likelihood, instead of the likelihood, since the log likelihood is usually mathematically
easier to handle. Notice that maximizing the log likelihood is justified by the fact
that the logarithm is a strictly monotonic function. Hence, our approach seeks to
compute

8 = argmaxln[p(zt\st,m(§t_1,zt_l))p(st|ut_1,§t_1)] (19)
5t

This expression can be decomposed into additive terms:

= argmaxlnp(zt|st,Th(§t_1,zt_l)) + Inp(sui—1,8¢—1) (20)
5t

= argmaxzlnp(z£i}|st,ﬁ%(§t71,ztfl)) + Inp(sgug—1,8¢—1) (21)
St 3

The differentiation of the argument on the right-hand side with respect to the pose
s¢ leads to the following gradient:

VL = sztlnp(zy]|st,m(ét_l,zt_l)) + Vs, Inp(st|ug—1,8-1) (22)
%

where L denotes the log-likelihood. The gradients on the right-hand side,

Vs, lnp(zy] s, M (571, 2871)) and In Vg, p(s¢|us_1, 8;_1), are the gradients of the mea-
surement model, and the motion model, respectively. We notice that the motion
model is differentiable, and the measurement model is piecewise differentiable. From
this follows the existence of the gradients. The specific calculation of the gradient is
a mechanical exercise, which is omitted in this paper since the gradients are fairly
complex.
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Gradient ascent then maximizes the log-likelihood by successively changing the
pose s; in the direction of the gradient.

st «— stt+aVglL (23)

Here a > 0 is a stepsize commonly used in gradient ascent.

Figure 3 shows two examples of maximizing the likelihood of the relative pose
of two consecutive scans through gradient ascent. Each column corresponds to
one example. The rows correspond to different points in time. As can be seen,
100 iterations are sufficient to obtain a good alignment even if the initial error is
huge. In practice, where misalignments are much smaller, we found that usually 20
iterations are sufficient.

In the literature, mapping with incremental likelihood maximization is a popular
approach [25, 59, 84, 91, 92]—with the current algorithm being merely a variant of
various known algorithms. While most approaches are not phrased in the context of
statistical maximum likelihood estimation, they can easily be derived as special cases
of Equation (21), using similar probabilistic motion and the measurement models
as the ones described in this paper. All these approaches follow the same logic: The
robot maintains a single map. When a new measurement is received, a ‘plausible’
pose is estimated and the map is then grown accordingly.

4 Incremental Mapping Using Posteriors

Unfortunately, the incremental maximum likelihood approach suffers a major draw-
back: It is inapplicable to cyclic environments. This limitation was recognized by
Gutmann and Konolige [33] and others [54, 87]. Figure 4 depicts the map obtained
in a cyclic environment. Here the map appears to be locally consistent. However, lo-
cal likelihood maximization still suffers a residual error that accumulates over time.
At the time the robot closes the cycle, the error has grown to a reputable amount,
making it impossible to generate a map that is locally consistent. The magnitude
of the error can grow without bounds, depending on the robot’s odometry and the
size of the cycle. Hence, the incremental maximum likelihood approach is brittle.

Technically, the inability to close cycles is caused by two factors. Firstly, the
method is unable to revise poses backwards in time. This is necessary when a cycle
is closed to regain local consistency. Secondly, the robot maintains only a single
hypothesis as to where it is. The unawareness of its own uncertainty may prevent
the robot from finding a good match when closing a cycle. Gradient methods only
work well if the initial estimate is within the basin of attraction of the maximum
likelihood estimate. Since the error can grow without bounds, the initial estimate
might be arbitrarily far away from the best match when closing a cycle. The resulting
map is then usually unusable.

12



(a) Initial match

la £

(b) After 10 iterations

(c) After 50 iterations

(d) After 100 iterations

(e) Initial match

(f) After 10 iterations

(g) After 50 iterations

(h) After 100 iterations

Figure 3: Two examples of gradient ascent for aligning scans (arranged vertically). In both cases,
the initial translational error is 10 cm along each axis, and the rotational error is 30 degrees. The
gradient ascent algorithm safely recovers the maximum likelihood alignment.
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Figure 4: A typical map obtained using the most simple incremental maximum likelihood approach.
While the map is locally consistent, the approach fails to close the cycle and leads to inconsistent
maps. This result elucidates the limitations of stepwise likelihood maximization, and illustrates the
difficulty of mapping cyclic environments.

4.1 Pose Posterior Estimation

To remedy this problem, we will now discuss a hybrid estimation approach. This
approach extends the incremental maximum likelihood algorithm by a second esti-
mator, which estimates the full posterior over poses (but not maps!). The posterior
over poses is given by

p(seldtm) = platlse,m) / D(stlue—1,80-1) Plse_1|d=,m) dse_1 (24)

This equation is obtained by substituting the pose s for z in (2), and conditioning
everything on the map m (except for the robot motion). It is essentially equivalent
to the Markov localization algorithm, a popular algorithm for mobile robot local-
ization with known maps [6, 40, 64, 81]. However, Markov localization assumes the
availability of a complete map of the environment, which is not assumed here.

The key reason for memorizing the full posterior p(s;|d’,m), instead of the maxi-
mum likelihood estimate §; only, it our desire to accommodate the increasing residual
uncertainty when moving into unmapped terrain. As the robot traverses a cycle, the
posterior grows increasingly large, and the posterior characterizes this uncertainty.

Formally, the posterior is obtained by substituting the maximum likelihood map
m(s'~1, 271 into Equation (24), which gives us

plseld’, (s 2" 7)) = plarls, (s, 27) (25)

/p(3t|ut—1> s1-1) p(si—1]d' ™ (s, 271) dsiq
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Notice the difference between this estimator and the one in (17). Equation (17)
computes the posterior over poses and maps; here we assume knowledge of the
map and compute the posterior over poses only. This frees us of the necessity to
calculate the most likely pose and instead enables us to maintain a full posterior
over all poses. On the other hand, calculating (25) requires integration, whereas
(17) does not. Luckily, the integration is well understood in the rich literature on
Markov localization, and below we will adopt one of the representations developed
there [18, 27, 48], as described in the next section.

Knowledge of the posterior gives us a better way to calculate the maximum
likelihood pose 5;. In particular, 5; is obtained by maximizing the posterior given
by (25), instead of the marginal posterior specified in Equation (17):

5 = argma,xp(st\dt,m(st_laZt_l)) (26)
5t

The resulting pose is generally the same when mapping unexplored terrain. However,
it may differ when closing a cycle, at which point the robot might have to compensate
a large pose error.

This consideration points out the key advantage of maintaining the full poste-
rior over poses, instead of the most likely pose only. Our approach fundamentally
addresses one of the two problems discussed above, namely that of errors growing
without bounds when closing a cycle. The posterior estimator can accommodate
such errors. In particular, when closing a cycle the posterior provides a spectrum of
hypotheses as to where the robot might be. The sample representation, described
in turn, provides a set of potential seeds for the gradient ascent search, which makes
it possible to find best matches when closing arbitraryly large cycles.

4.2 Approximation Using Monte Carlo Localization

Our algorithm implements the posterior calculation using particle filters [22, 23, 52,
66]. Particle filters apply Rubin’s idea of importance sampling [72] to Bayes filters.
The resulting algorithm is known in computer vision as condensation algorithm [38],
and in mobile robotics as Monte Carlo localization (MCL) [18, 27, 48]. A similar
algorithm has been proposed in the context of Bayes networks as [42] survival of the
fittest.

Particle filters represent the posteriors by a set of particles (samples). Each
particle is a pose that represents a ‘guess’ as to where the robot might be. Particle
filters weigh each particle by a non-negative numerical factor, commonly referred
to as importance factor. Figure 5 shows an example of the particle representation
in the context of mobile robot localization. Shown there is a sequence of posterior
beliefs for a robot that follows a U-shaped trajectory. Each of the sample sets is an
approximation of densities (of the type shown in Figure 1).

The general algorithm is depicted in Table 1. When transitioning from time ¢ —1
to time t, new particles are generated by sampling poses from the current posterior
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Figure 5: Sample-based approximation for the posterior over poses. Here each density is repre-
sented by a set of samples, weighted by numerical importance factors. The Monte Carlo localization
algorithm is used to generate the sample sets.

and guessing a successor pose using the motion model. The weight of the particle
is then obtained using the measurement model. Particle filters have been shown
to approximate the Bayes filter update equation given in (2). As argued in the
statistical literature, the particle representation can approximate almost arbitrary
posteriors at a convergence rate of ﬁ [83]. It is convenient for robotics, since

it is easy to implement more general than most alternatives [27], though they are
generally less efficient than Kalman filters.

In the context of mapping, the application of particle filters (Monte Carlo local-
ization) for posterior estimation is straightforward. At each point in time, the robot
has access to the map built from past data. Another key advantage of the particle
representation is that directly facilitates the optimization of (26) using gradient as-
cent. Qur approach performs gradient ascent using each sample as a starting point,
then computes the goodness of the result using the obvious likelihood function. If
the samples are spaced reasonably densely (which is easily done with only a few
dozen samples), one can guarantee that the global maximum of the likelihood func-
tion can be found. This differs from the simple-minded approach above, where only
a single starting pose is used for hill-climbing search, and which hence might fail to
produce the global maximum (and hence a usable map).

4.3 Backwards Correction

As argued above, when closing cycles it is imperative that maps are adjusted back-
wards in time. The amount of backwards correction is given by the difference Ay,:

A, = 51— 8 (27)
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Algorithm particle_filter(X; 1,u; 1, 2t):

fori=1tonto
(4) )

sample z;’, from X; 1 according to the importance factors w;"’; in Xy
sampl(g x,@ ~ p(@t|ut,1, xil_)l)
set w,@ = p(?t|$§z))
add (:cff),w,gz)) to Xy
endfor
normalize all weights w§i> in X; so that they sum up to 1.
return X,

Table 1: The particle filter algorithm. This algorithm is an approximate version of Bayes filters
that uses particles to represent the posterior belief. The input is a weighted particle set X;_1
representing p(z:—1|d* '), along with a control u;—1 and a measurement z;. The output is a new
weighted set of n particles representing p(w:|d").

where §; is as defined in (21) and 3; as in (26), respectively. This expression is the
difference between the incremental best guess (c.f., our base-line approach) and the
best guess using the full posterior.

If A;, = 0, which is typically the case when not closing a loop, no backwards
correction has to take place. When Ag, # 0, however, a shift occurred due to a re-
connection with a previously mapped area, and poses have to be revised backwards
in time.

Our approach does this in three steps:

1. First, the size of the loop is determined by determining the scan in the map that
led to the adjustment (this is a trivial side-result in the posterior computation).

2. Second, the error Ay, is distributed proportionally among all poses in the
loop. This computation does not yield a maximum likelihood match; however,
it places the intermediate poses in a good starting position for subsequent
gradient ascent search.

3. Finally, gradient ascent search is applied iteratively for all poses inside the
loop, until the map is maximally consistent (maximizes likelihood) under this
new constraint arising from the cycle.

These three steps implement an efficient approximation algorithm to the maximum
likelihood estimator for the entire loop. Strictly speaking, this approach is not an
online algorithm any longer, since the time required for backwards correction is not
constant. A remedy might be found by amortizing the costs of closing the loop
over the time. However, we found that in practice the entire correction can well be
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Figure 6: Robots: (a) Two of the pioneer robots used for multi-robot mapping. (b) Urban robot
for indoor and outdoor exploration. The urban robot’s odometry is extremely poor. All robots
have been manufactured by RWI/ISR.

performed between subsequent range measurements, for all environments discussed
in the experimental result sections of this paper.

5 Results for Single-Robot Mapping

We validated the basic algorithm in various different environments. The map-
ping algorithm was at the core of several demonstrations to Government officials
in DARPA’s Tactical Mobile Robot (TMR) program. The role of CMU’s Merca-
tor project was to demonstrate the feasibility of rapidly acquiring accurate maps
of building interiors with mobile robots. Our experiments are aimed at illustrating
the robustness and accuracy of our approach in environments that traditionally are
difficult to map.

The majority of the results discussed below were obtained with the robots shown
in Figure 6. Figure 6a shows two RWI Pioneer AT robots, which were modified by
replacing two of the wheels with passive casters (the original skid-steering mechanism
was unable to turn on carpet). Figure 6b shows a tracked robot known as urban
robot, developed by ISR. This highly versatile robot has been developed for the
DARPA TMR program, for indoor and outdoor missions in rugged terrain.

Our first experiment is concerned with closing the cycle in cyclic environments.
Figure 7 shows different stages of mapping. using the very same data as in Figure 4.
Here, however, the posterior estimator is used to detect and correct inconsistencies
when closing the cycle. The particles are also shown in Figure 7, along with the most
likely robot pose. As is easily seen, the resulting map is now consistent. Moments
before the cycle is closed, the accumulated error is approximately 50 centimeters,
as shown in Figure 7b. When closing the cycle, the most likely pose is adjusted
in accordance to the previously mapped area, thereby practically eliminating this
error. The backwards correction mechanisms then distributes the adjustment along
the cycle, and the new, improved map is generated in less than a second of processing
time. Figure 7c¢ shows the final map.

Figure 8 shows a second example, obtained in a cyclic hallway environment that
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Figure 7: Incremental algorithm for concurrent mapping and localization. The dots, centered
around the robot, indicate the posterior belief which grows over time (a and b). When the cycle is
closed as in (c), the posterior becomes small again.

is larger than the previous one. Again, our approach manages to accommodate ac-
cumulated odometry errors and arrives at a map sufficiently accurate for navigation.
An interesting experiment is shown in Figure 9. Here the overall computational time
for mapping was reduced by a factor of five, leading to significantly worse matching
results along the way. As Figure 9a indicates, the cumulative error when closing
the cycle is substantial; it is approximately 4 meters. When closing the loop, the
pose estimate places high likelihood at a location that is actually incorrect. The
map at this time shown in Figure 9b is consistent, but does not accurately reflect
the geometry of the building. It is important to notice that the estimated most
likely pose is perfectly reasonable, as the resulting map if free of any major conflicts.
However, as the robot continues to traverse the corridor, such a conflict becomes
unavoidable. Consequently, the posterior over poses changed accordingly, and the
map is revised. The resulting map is shown in Figure 9c. This map is now topo-
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Figure 8: A larger cyclic corridor (approximately 30 meters diameter). Situation (a) before

(b)

(b) after closing the cycle.

(a)

(b)

and

Figure 9: Same data set as in Figure 8, but with additional errors. (a) Situation before closing
the cycle. (b) The initial attempt to alleviate the conflict fails. (c) However, the posterior estimate
enables the robot to recover a few time steps later. (d) The final map.
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Figure 10: Mapping without the probabilistic posterior estimate over poses described in the pa-
per. This result is the outcome of the naive incremental maximum likelihood mapping algorithm,
obtained under otherwise identical conditions as in Figure 9. The map shown here is plainly unus-
able, which is in contrast to the one shown in Figure 9d. This result illustrates the importance of
estimating posteriors over poses for the recovery from large odometry errors.

logically consistent, although not quite as accurate as the map obtained with more
computational resources available.

The importance of the posterior estimate over poses becomes apparent when
running our algorithm without estimating the full posterior, and instead maintaining
a single pose estimate, as described in Section 3.1, but with our backwards correction
mechanism. This is equivalent to maintaining a single sample only for the pose
estimate, at the location of the most likely pose §. Figure 10 shows the development
of maps over time, obtained under otherwise equivalent conditions as those that
led to the results shown in Figure 9. The situations in diagrams a and b of both
figures are quite similar: The initial error is large, and the initial map is topologically
incorrect. However, without the posterior pose estimator, the approach is unable
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(b)

Figure 11: Mapping without odometry: (a) raw data, (b) map, generated online.

to recover from this incorrect alignment and instead generates the maps shown in
Figures 9c and d. These maps are clearly incorrect to the extent that they are
unusable for robot navigation. This result highlights the importance of estimating
the posterior over robot poses during mapping.

To test the robustness of the mapping algorithm in the extreme, we manually
deprived the data of its odometry information. Hence, only the laser range data can
be used to estimate the robot’s pose. Odometry-free mapping tests the robustness
of the algorithm. If an algorithm can generate a consistent map without odometry
data, it can accommodate failure of a robot’s wheel encoders or inertial navigation
unit (INU). Clearly, odometry-free mapping can only succeed if the environment
possesses sufficiently distinguishing features. For example, without odometry it
would be impossible to map a wide-open area where all obstacles are beyond the
reach of the sensors, or very long, featureless hallways.

Figure 11 shows the result of mapping the cyclic environment without odometry.
Figure 11a depicts the raw data that, without odometry, is difficult to interpret.
The map in Figure 11b has been generated using the statistical technique described
in this paper. In particular, the same set of parameters was used to construct this
map, as if the odometry data was available. This sheds light on the robustness of
our approach.

Mapping with poor odometry has practical significance, as not all mobile robots
have good odometry. A particularly inaccurate robot is the urban robot shown
in Figure 6b. Figure 12a depicts a raw data set gathered while the robot was
autonomously exploring and mapping a military facility in Fort Sam Houston in
Texas. While the odometry is quite accurate when the robot moves straight, its
tracks introduce up to 100% rotational error when the robot rotates. Thus, odometry
alone is unusable even over very short time intervals. The map of this non-cyclic
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Figure 12: Autonomous exploration and mapping using the urban robot: Raw data and final map,
generated in real-time during exploration.

environment is shown in Figure 12b, along with the robot’s exploration path. This
map is not perfect, as attested by the fact that the walls are not perfectly aligned.
However, is is sufficiently accurate for navigation.

A final result was obtained in a public place, the Tech Museum in San Jose,
California. A key feature of this environment is the availability of an accurate
blueprint, which enables us to evaluate the accuracy of the map acquired by the
robot. The specific map was acquired with a RWI B21 robot. Figure 13a shows an
occupancy grid map [25, 59] of a large center area in the museum, extracted from
the aligned scans. A comparison with the architectural blueprint of the museum
in Figure 13b illustrates that the learned map is quite accurate. Several differences
between these maps stem from the fact that the blueprint does not accurately reflect
the nature and location of the exhibits in the museum. In this regard, the map
learned by the robot is more accurate than the museum’s blueprint.

6 Multi-Robot Mapping

One of the nice features of the probabilistic state estimators is that they make the
extension to multi-robot mapping quite straightforward. In the multi-robot mapping
problem, multiple robots gather data concurrently in an attempt to build a single,
unified map of the environment. The use of multiple robots is advantageous if the
speed at which a map is being constructed is important: In the best case, the speed-
up by using N robots instead of one is super-unitary: In theory, environments exist
where N robots consume approximately % the time it would take a single robot to
map the environment. The factor 2 arises from the fact that in some environments,
a single robot might waste time traversing known territory to get back to places not
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Figure 13: (a) Occupancy grid map and (b) architectural blueprint of a recently constructed
museum in San Jose. Notice that the blueprint is inaccurate in certain places.

yet visited. In practice, however, the speedup is usually sub-linear [80].
Our current implementation makes two important restrictive assumptions:

e First, the robots must begin their operation in nearby locations, so that their
range scans show substantial overlap.

e Second, the software must be told the approximate relative initial pose of
the robots. The accuracy of the initial estimate is bounded by the basin of
attraction of the gradient ascent algorithm. A safe error is usually up to 50
cm and 20 degrees in orientation.

Under these conditions, the extension to multi-robot mapping is straightforward. In
particular, each robot maintains a local, robot-specific estimate of its pose, while
sharing the same map. The estimation of the most likely pose using the incremental
maximum likelihood estimator is based on a single, global map that fuses data
collected by all robots.

Put mathematically, if we use k to index each particular robot, the posterior
over the k-th robot pose is given by

Plotldhym) = pletglsiem) [ ploeslue-spsi-1e) plsesild m) dsi-v
(28)

This equation generalizes Equation (24) to the multi-robot case with a single global
map m. The most likely pose of the k-th robot is then determined by generalizing
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Equation (26):

E= argmaxp(st,ud};,m(sz_l,z,tc_l)) (29)
Stk

St,
where the function 7 incrementally enlarges the global map m. This extension ex-
ploits the fact that none of the underlying statistics crucially depends on the number
of robots. It also exploits an interesting conditional independence that enables us to
factorize the posterior distribution of the joint pose space. In particular, the com-
mitment to maximum likelihood maps eliminates possible dependencies between the
pose estimates of different robots, which otherwise exist for the full Bayesian solu-
tion. Thus, in the general context, the posterior over robot poses would have to be
estimated jointly, but here we can estimate it locally on each robot (see [28] for a
more detailed discussion). We notice that the pose estimation can be carried out
locally, on each robot. This leads to a computationally elegant decomposition of
the problem, in which each robot basically performs the same basic algorithm as in
single-robot mapping, but map updates are broadcast to all robots.

Figure 14 shows a map built by two autonomously exploring robots. This exper-
iment was carried out in a TMR demonstration that took place in a training facility
for fire fighters in Rockville, Maryland. The robots coordinate their exploration
using a technique described in [8, 80]. In essence, this technique assigns robots to
unexplored areas (frontiers) based on information-theoretic considerations. The map
shown in Figure 14 is constructed online, as the robots explore, using the distributed
software system outlined above. As is easily seen in Figure 14a through e, the robot
quickly maps the confined operating space. Finally, they return to locations that
were not mapped perfectly in the first traversal of the building. In this example,
the entire operation took a little less than two minutes, and the map was generated
online as the robot moved. Figure 15 shows the result of a similar experiment, car-
ried out at Fort Sam Houston. This experiment involved three robots, marked A,
B, and C, in an environment more than three times the size. The resulting map was
generated in less than three minutes. The paths in Figure 15 show how the robots
systematically explore the environment and succeed in building a single, consistent
map—despite the poor accuracy of the urban robot (robot B in the figure).

It is possible—though currently not part of our implemented software system—to
relax the restrictive assumption of known relative initial poses. If the initial poses
of robots relative to each other is unknown, the robots face a global localization
problem, which is the problem of localizing robots under global uncertainty. One
natural way to solve the problem of determining one robot’s pose relative to another
is to globally localize one of the robots in the map built by the other robot. It is
well known [18, 28] that Monte Carlo localization (MCL)—which our approach uses
for posterior pose estimation—can solve the global localization problem. It does
so under one restrictive assumption: That the robot actually be inside the map in
which it is being localized. While this assumption is trivially the case for the type
problems studied in the localization literature, it is problematic in the context of
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Figure 14: Online mapping during exploration with two robots.
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Figure 15: Map built by three autonomously exploring robots. The initial robot poses are on the
left as marked by the letters A, B, and C. The robots A and C are pioneers, and the robot B is an
urban robot.

multi-robot mapping. In particular, two robots might start out in different, non-
overlapping parts of a building, and hence none of the robots operates inside the
map built by any of the other robots. Thus, to estimate the poses of robot relative
to each other, the robots must be able to estimate the degree of overlap between
the areas traversed thus far. Clearly, MCL provides no answer to this hard and
important problem.

However, MCL can be applied if it is known that one robot starts in the map
built by another. Such a situation is shown in Figure 16. Here one robot is declared
the team leader, which builds an initial, partial map. The second robot is then
placed somewhere inside this map, but its pose inside this map is unknown. The
particle filter of the second robot is then initialized by a set of particles drawn
uniformly across the map of the first robot. The exact same posterior estimator
depicted in Table 1 is then applied to globally localize the second robot in the
map built by the team leader. Figure 16a shows the posterior after integrating one
measurement. In this specific example, the samples have been generated in proximity
to the first robot’s path, assuming the second robot starts out near a location where
the team leader has been before. A few moments later, the relative pose has been
determined (Figure 16b) and the robot begins contributing data to the same, global
map (Figure 16¢).
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Figure 16: A second robot localizes itself in the map of the first, then contributes to building a
single unified map. In (a), the initial uncertainty of the relative pose is expressed by a uniform
sample in the existing map. The robot on the left found its pose in (b), and then maintains a sense
of location in (c).

7 3D Structural and Texture Mapping

A second extension of the basic mapping algorithm is the idea of three-dimensional
maps. Such maps can be informative to people interested in a virtual view of a
building interior. For example, they enable one to pay a virtual visit using VR
interfaces without actually physically entering the building. This might be useful for
architects, real estate agents, and also for people preparing to operate in hazardous
environments such as nuclear waste sites.

Figure 17a shows a robot equipped with two laser range finders. One of the laser
range finders is pointed forward, to generate a 2D map using the techniques described
above. As a result, it provides the robot with accurate pose estimates. The second
laser range finder is mounted vertically, so that the light plane is perpendicular to
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Figure 17: (a) Pioneer robot equipped with 2 laser range finders and panoramic camera used for
3D mapping. (b) Panoramic image acquired by the robot. The curved line indicates the region in
the image that corresponds to the vertical slice measured by the laser range finder.

both the first range scanner, and the motion direction of the robot. As a result, this
range scanner measures cross-sections of the building as the robot moves. If the robot
traverses the environment only once—which is typically the case in exploration—the
measurements of the upward-pointed laser do not overlap; hence, there is little hope
of using it for localization. However, the data provides information about the 3D
structure of the building.

The robot shown in Figure 17a is also equipped with a panoramic camera. The
panoramic camera utilizes a small mirror, which provides an image that contains
the area covered by the upward-pointed laser range scanner. The mirror is mounted
only a few centimeters away from the optical axis of the laser range scanner. Careful
calibration of both devices enable us to match range and color measurements along
the measurement plane of the vertical range finder, basically ignoring the small
disparity between the optical axes of the laser and the camera. Figure 17 shows a
panoramic image. The curved line highlights a vertical cross-section of the building,
which corresponds to the perceptual field of the upward-pointed laser range finder.

Our approach represents 3D maps as collections of polygons with texture su-
perimposed. Our 3D mapping algorithm proceeds in five steps, all of which can be
carried out online.

1. Pose estimation: Pose estimation is carried out in 2D, using the techniques
described above. The vertical range data is then projected into global coordi-
nates using the maximum likelihood pose s.

2. Raw data smoothing: Noise in the range measurements is reduced by local
smoothing. Neighboring sensor scans are smoothed by replacing them with a
locally weighted average, using a smoothing kernel of size 3 by 3. This step
yields significantly smoother surfaces in the final map.

3. Structural Mapping: The map is then built by searching nearby range scans
for nearby measurements. More specifically, for each time 7 and index %, for
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which the coordinates of the four measurements

Zk]a Z’[rH_l] ’ Zﬂ—l’ Zk:i—'—ll] (30)
are less than § apart in 3D coordinates, these points are assumed to corre-
spond to the same objects. Hence, a polygon is generated with the endpoints
corresponding to those four measurements and added to the map. Notice that
polygon’s are only constructed for measurements recorded right after another,
and for neighboring sensor beams. The test of adjacency in 3D space is essen-
tial, since large discontinuities often correspond to open space (e.g., an open
door).

4. Texture Mapping: If a polygon is generated, the image sequence recorded
between the times 7 and 741 are used as texture for the polygon. In particular,
our algorithm extracts from the camera image a stripe that corresponds to the
perceptual range of the laser. Stripes are then concatenated, which generates
a texture image for the entire range scan, and the region corresponding to
the area between the i-th and the (i + 1)-th range scan are extracted using a
straightforward geometrical argument. This texture is then mapped onto the

polygon.

5. Map simplification: To simplify the maps, the polygons are finally fused by
a software package developed by computer graphics researchers [30, 31]. This
approach, which our software uses without modification, fuses polygons based
on a quadratic error measure of their appearance in the rendered image. We
found that the number of polygons can be reduced by a factor of ten without
significantly altering the shape of the model. The result of this simplification
step is, thus, a reduced complexity model that is also smoother.

The result of this procedure is a collection of textured polygons that can be rendered
using a VRML viewer. While in principle, these steps can be carried out online, we
remark that our current implementation is offline, due to the lack of a fast frame
grabber on our mobile robot.

Figures 18 and 19 show views of a 3D structural map (without texture). The map
in Figure 18 has been created from approximately 1 minute or raw data obtained
in a straight corridor segment, whereas the ones in Figure 19 include a cycle and
correspond to approximately 5 minutes of robot operation. All of these maps are
in VRML format, enabling a user to navigate interactively through the building.
Figure 19 illustrates the effect of the map simplification step above. The left column
shows an un-simplified map, which contains 82,899 polygons. The right column
depicts the simplified polygonal model, which contains only 8,289 polygons (10%).
The appearance of both is similar; however, rendering the more compact one is an
order of magnitude faster.
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Figure 18: 3D Map.

Figure 20 shows synthesized views of a structural map with texture superim-
posed, of a hallway segment in an office building. All views in this figure are ren-
dered from the 3D model, using a VRML viewer. Figure 20a shows a view from
the outside with the texture of the inside walls. Such a view is unattainable in the
physical building. The other three renderings show views from the inside. One of
the most notable errors are the lids of the two trash bins, which appear to be sloped.
The robot is smaller than those trash bins and therefore unable to see the top. The
sloped lid, thus, is the result of the polygonal interpolation. The map in Figure 20
did not undergo the map simplification step above and possesses 80,470 polygouns.

8 Limitations

The techniques proposed here possess a range of limitations, which shall be discussed
in this section. These limitations are the result of the various necessary compromises
relative to the true Bayes filter, which computes a full posterior over maps and robot
poses.

First and foremost, our approach of using incremental maximum likelihood com-
bined with posterior estimation over poses is clearly less powerful than full posterior
estimation. In particular, our approach is unable to map nested cycles, since only a
single posterior is maintained. As the size of the cycle increases, the time required for
backwards correction will ultimately exceed the available time in an online mapping
system. Hence, for very large cycles it may be necessary to delay data processing
until the error correction mechanisms succeed. However, this limitation seems not to
pose serious obstacles in any of the environments where our approach was applied.

We also believe that our positive results depend on the high accuracy and
information-richness of laser range finders. Basically, knowing the poses of the robot
at which measurements were taken is sufficient to generate accurate maps. It is un-
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Figure 19: Views of the 3D map, for the high-resolution model (left column) and the lower
resolution model (right column).
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Figure 20: 3D Structural maps with texture. These views have been synthesized using a VRML
viewer, from a full-blown polygonal texture model in 3D coordinates. The original renderings are
in color and can be viewed at http://www.cs.cmu.edu/~thrun/3D.
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clear how our approach would degrade if the quality of the measurements was much
lower (e.g., sonar sensors or underwater imagery).

In the multi-robot mapping approach we already discussed the restrictive as-
sumptions that the robots must know their relative poses to each other. The most
general case, where robots might not even operate in the same part of the environ-
ment, is hard and, to our knowledge, a completely open problem. In particular, if
robots are placed in arbitrary places without knowledge of their relative pose, they
face the difficult decision whether two similarly looking local maps correspond to
the same location. Moreover, substantial time might pass by before different local
maps can be integrated into a global map, making it difficult to perform mapping
online.

Finally, we notice that the 3D mapping approach does not take advantage of
the opportunity to use 3D data for pose estimation. It only uses the horizontal
laser for pose estimation. As argued above, when traversing the environment once
the upward-pointed laser never sees the same object twice, hence the data becomes
relatively useless for localization. However, we currently lack a sound approach for
integrating data and estimating poses if the same location is traversed more than
once.

We also notice that our current texture mapping implementation does not run
online, due to the lack of an appropriate frame grabber on our robot. However, we
do not view this as a principle limitation of the mapping approach presented here.
A recent extension that uses the EM algorithm to generate flat-surface maps can be
found in [53].

9 Related Work

The issue of building maps with mobile robots has received considerable attention
over the past years. Virtually all state-of-the-art algorithms are probabilistic and
can be derived from the Bayes filter for maps, Equation (12).

To date, the most successful attempt to implement the full posterior calcula-
tion, as specified in Equation (12), is the SLAM family of algorithms, which employ
Kalman filters [9, 10, 49, 50, 61, 62]. This approach goes back to a seminal paper
by Smith, Self, and Cheeseman [82]. Recall that Kalman filters represent beliefs by
Gaussians; thus, they require O(N?) parameters to represent the posterior over an
N-dimensional space. Calculating the Kalman filter-equivalent of Equation (12) in-
volves matrix multiplication, which can be done in O(N?) time [58]. This critically
limits the number of features that can be mapped (see [51] for a recent attempt
to escape this limitation using hierarchies of maps). In practice, this approach has
been applied to mapping several hundreds of free parameters [49]. A second limita-
tion arises from the Gaussian noise assumption in Kalman filters that was already
discussed at several places in this article. In the context of mapping, unimodal noise
can only be achieved if features in the environment can be identified uniquely. The
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problem of feature identification is known as the data association problem, or the
correspondence problem. Existing Kalman filter implementations often use ad hoc
methods to identify correspondences, and they are brittle if features are confused.
This contrasts the work presented here, which does not assume identifiable features.
In particular, the maximum likelihood estimator calculates the correspondence of
objects in the map and objects detected in the most recent laser scan along the way,
enabling our approach to cope with highly ambiguous environments. However, our
approach lacks the ability to estimate the full uncertainty of maps and poses, which
is a key feature of the Kalman filter approach.

There exist recent extensions of the basic paradigm that rely on Gaussian mix-
tures of posteriors, instead of a single Gaussian. This leads to an algorithm capable
of handling ambiguities in the data association [14, 24]. This work continues a recent
trend found in mobile robot localization, where other authors successfully applied
similar mixture representations [39, 70, 71]. If this line of research proves successful,
it might become a viable alternative to the approach proposed in this paper.

As discussed in the introduction to this paper, a second class of mapping al-
gorithms is based on EM. EM is an algorithm for maximum likelihood estimation
that iterates different estimation steps. EM algorithms have been applied for topo-
logical mapping [76, 75] and for building metric maps [88]. The latter maps are
more related to the maps presented here. EM mapping differs from the maximum
likelihood estimator discussed in this paper in that it estimates the entire map all at
once, along with all poses. This provides EM with a sound approach to likelihood
estimation, which uses all data for estimating the poses and the map. In contrast,
the incremental maximum likelihood algorithm uses only the data leading up to a
specific pose for pose estimation. However, EM is also inherently batch, and esti-
mating a map with EM requires multiple passes through the entire data set. The
algorithm presented here is incremental.

Finally, as pointed out above, there exists a range of algorithms that are variants
of the incremental maximum likelihood method described above [26, 46, 47, 56, 65,
89, 91, 92, 93]. Viewed in this light, our maximum likelihood estimator is strikingly
similar to a large corpus of existing literature. The key difference between our work
and this literature is the integration of posterior pose estimation, which enables our
approach to close cycles.

Probably the most related research is that of Gutmann and Konolige [33]. Sim-
ilar to our algorithm, their approach integrates a maximum likelihood mapping
algorithm with a posterior estimator. The posterior estimator is used to identify
and correct errors when closing a cycle. Like us, Gutmann and Konolige found that
this idea is very robust in practice, leading to highly accurate maps in cyclic en-
vironments. The differences between their and our work are on the technical side:
The posterior estimator in the current approach is realized using particle filters,
whereas Gutmann and Konolige rely on grid-based estimation methods similar to
the ones described in [29]. Konolige and colleagues recently extended their approach
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to multi-robot mapping, producing similar results to the ones shown here [45].

The vast majority of mapping algorithms in the robotics literature operates in
2D. Recently, Moravec and Martin extended the occupancy grid technique for en-
vironment mapping to three-dimensional grids [60]. Moravec and Martin use stereo
vision as primary sensor, which makes the extraction of accurate depth information
a challenging endeavor. He successfully demonstrated that accurate occupancy grid
maps could be learned given sufficient time and memory. His approach requires
accurate pose estimation, which in his experiments were provided manually. How-
ever, it appears that algorithms like the one reported here could be married with 3D
occupancy grids to generate accurate maps even if the robot odometry is poor. A
major difference between Moravec and Martin’s work and the work reported here is
the nature of the 3D maps. Our representation is (non-probabilistic) polygons, with
higher texture resolution than Moravec and Martin’s occupancy grids. The use of
polygons makes it easier to render views of the map. However, our approach lacks a
methodology for integrating multiple noisy measurements when traversing the same
location twice.

In the area of computer vision, several researchers have studied the topic of
3D scene reconstruction. Approaches for 3D modeling can be divided into two
categories: Approaches that assume knowledge of the pose of the sensors [1, 2, 3,
17, 78], and approaches that do not [35]. Our approach uses mobile robots for data
acquisition; hence our approach falls into the second category due to the inherent
noise in robot odometry (even after pose estimation). The majority of existing
systems also require human input in the 3D modeling process. Our approach is
somewhat related to [37], which reconstructs planar models of indoor environments
using stereo vision, using some manual guidance in the reconstruction process to
account for the lack of visible structure in typical indoor environments. Related
work on outdoor terrain modeling can be found in [12].

10 Discussion

In this paper, we proposed an online algorithm for mapping large environments with
mobile robots. At its core is the idea of incrementally generating a single maximum
likelihood map, paired with a probabilistic estimator of the residual pose uncertainty.
The pose uncertainty is used to identify and eliminate inconsistencies when learning
maps if cyclic environments. As a result, even large errors that otherwise might
make it impossible to close a cycle can be compensated. The resulting algorithm
can generate maps of cyclic indoor environments online. Empirical results suggest
that the resulting algorithm is highly efficient and robust in the face of sensor noise.
The resulting maps are detailed and accurate.

Building on the basic mapping algorithm, we proposed an extension that enables
teams of robots to integrate data into a single, global map in a computationally scal-
able fashion. Empirical results obtained with up to three simultaneously exploring
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robots illustrate that our approach is well suited to generate maps with teams of
robots, as long as their relative initial pose is known. We also described a method
for constructing three-dimensional maps of indoor environments. These maps are
generated using laser range data and visual texture information obtained with a
panoramic camera. An implementation of this idea led to detailed 3D maps rep-
resented in VRML, which enables people to interactively inspect a building from
remote locations.

The discussion of limitations in Section 8 leads to a range of research opportu-
nities. On the statistical side, it appears that our combined estimator yields good
results when compared with a (hypothetical) algorithm that calculates the full pos-
terior over maps and poses. It certainly produces maps that are sufficiently accurate
for robot navigation. However, it is unclear how the performance of our approach
degrades with the inaccuracy of the sensors. For example, it is unclear if sonar sen-
sors are sufficiently accurate to yield good results. Another topic of future research
is the development of multi-robot mapping algorithms that make no assumption on
the initial conditions. In particular, the assumptions that robots must know their
relative initial pose is a key restriction of the current approach, thus warrants further
research.

In our opinion, the most striking research opportunity arises from the notion
of 3D maps. Three-dimensional maps open new opportunities for mobile robotics,
in that they are meaningful and usable for people in ways that 2D maps are not.
Ultimately, having access to 3D information should also facilitate a range of hard es-
timation problems, such as the data association problem in mapping. This is because
3D views carry more information than their 2D counterparts, making it potentially
easier to disambiguate different places. At first glance, one might attempt to apply
the rich, known statistical machinery for 2D mapping to the three-dimensional case.
However, mapping in 3D is computationally more difficult than in 2D, opening new
opportunities to generate efficient and sound mapping algorithms.

We believe the approach presented here fills an important gap in the literature.
Previous indoor mapping algorithms that could cope with large errors when closing
the loop were not incremental, but instead required an elaborate procedure with
multiple iterations through all available data. The current approach is an online
algorithm. This is specifically important for robot exploration, since exploring robots
have to continuously make decisions as to where to explore next. The algorithms
presented here were found to be extremely robust and reliable in a range of recent
experiments.
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