Towards The Integration Of Learning
Into Mainstream Computer Programming

Sebastian Thrun
School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~thrun

Abstract

This paper argues that statistical learning from ex-
amples 1s not only useful in nature, but also has its
firm utility in conventional software development. It
presents preliminary work towards an extension of
C++ that makes it possible to “train” C++4 programs
through examples. A mobile robot implementation
suggests that the development of software using these
learning tools, can be an order of magnitude faster than
conventional computer programming.

Introduction

Today, the vast majority of computer software is devel-
oped by hand. To develop software, a (team of) pro-
grammer(s) analyzes the problem, and develops pro-
gram code by hand to solve the problem. In recent
years, an alternative paradigm has gained in impor-
tance: learning, or teaching/demonstration (Friedrich
et al. 1996; Mitchell 1997). Here a programmer feeds a
computer with examples, and the computer acquires a
solution by generalizing from those. Successful fielded
applications of learning for software development ranges
from automatic parameter tuning (nowadays common
in speech recognition (Lee 1990)) to learning entire pro-
grams from scratch (e.g., as is the case in generic pro-
gramming (Koza 1992; 1994)).

Let us contrast manual programming with learning
from examples. Clearly, both methodologies have ad-
vantages and shortcomings. It comes at little surprise
that manual programming is by far the most effective
way of software development to date. Put simply, in
most domains learning from scratch is hopeless, since
too many training examples would be required to learn
a function of the desired complexity. However, several
remarkable examples exist where teaching a computer
outperformed programming by hand. One of the most
striking examples is Pomerleau’s ALVINN (Pomerleau
1993), an autonomous land vehicle. ALVINN learned
driving by watching a human drive. It could be trained
by an average human driver to reliably stay on the
road in as little as 10 minutes training time, using a
generalizing neural network for image analysis. Coding
the same function manually required several orders of
magnitude more effort, as the work by Dickmanns and

colleagues has demonstrated (). This comparison illus-
trates that learning has the potential to play a pivotal
role in certain software development tasks.

The recognition that none of two approaches
contrasted here—conventional programming and
learning—is uniformly superior to the other, suggests
that programming frameworks powerful enough to
encompass both should be better than those that
support only one of them. When solutions are eas-
ily hand-coded, conventional programming should be
used. When easier taught by examples, exemplar-based
training should be invoked. Thus, the central thesis
put forward in this paper is that new programming
methodologies are needed that continue to support
proven methodologies, but are powerful enough to
integrate learning and training as a means of software
development.

The impact of such a new programming paradigm
could be dramatic. Instead of developing all code by
hand,

e the costs of code development could be reduced sub-
stantially (preliminary tests suggest that an order
of magnitude is not unreasonable in certain appli-
cations), and

e code could modify itself at run-time to adapt to its
environment. This would enable us to develop con-
tinually improving software.

However, such a paradigm also opens new questions, for
many of which we currently lack good answers

e How can we effectively search through code? How
can we assign credit between the target signal and
the internals the code that are to be learned?

e What are good ways of modifying code so that the
result is still human-comprehensible? How can the
learning algorithm explain to programmers how cer-
tain code was modified, and why?

e How can a programmer signal to the computer his
level of confidence in his own (or previously learned)
code, so that learning does not modify code already
known to be correct?

e How can we obtain formal performance guarantees
with code that has been learned from examples?

e How can one debug code that has partially been
learned from examples?

Obviously, answers for many of these question are un-
clear, as this research is in its early stage. To investigate
the viability of the basic idea advocated here, we have
developed a prototype, as an extension of the popular
programming language C+4++. The bulk of this paper
describes this prototype implementation. We return to
the general discussion towards its end.

The Learning Language CES

Leaving Gaps

CES is an extension of C4++, developed as an attempt
to smoothly integrate learning into mainstream pro-
gramming. The principal idea for learning in CES
is to allow programmers to leave “gaps” in the code.
For example, instead of specifying the exact code that
transforms a set of variables A into another set of vari-
ables B, one might instead specify that there exists a
function and define a parameter space for this func-
tion. Searching this space in pursuit of minimizing some
data-defined error function is CES’s approach to learn-
ing from examples.

Currently, our implementation supports continuous
function approximators with differentiable parameters,
such as Back-propagation-style networks. For example,
the code segment

fa<double, double> f(oneLayerNeuronet, 5);
double x, y;
y = f.eval(x);

declares a neural network f with 5 hidden units that
maps a (one-dimensional) real-valued variable into an-
other one, and subsequently applies this network to map
x into y. The mnemonic fa is short for function approx-
tmator. The code above specifies that the variable y can
be computed from z, but leaves open the exact specifi-
cations of this computation. Instead, it suggests that a
neural network can do the job. Learning now amounts
to estimating the network’s parameters.

This example illustrates a specific design choice in
CES: For code to be trainable from examples, it has
to contain explicitly marked function approximators.
Learning takes only place there. Such a representa-
tion has the advantage that it clearly separates people’s
code from learned code. People’s code is conveniently
coded in C++, whereas the learned code resides in nu-
merical parameters. The separation makes it easier for
programmers to maintain control over their software.
However, what has been learned is only understandable
by observing the approximator’s input-output behavior
(unless one tried analytical tools for dissecting function
approximators like neural networks (Craven & Shavlik
1994; Thrun 1995)).

Training in CES is initiated through specific training
statements. An example is given by the following code
segment:

double x, y, z, d;

y = £(x);

z.train(d);

Here the value of the variable y depends on the function
approximator f. Let us also assume the value of z was
computed using y.

The last command invokes learning. It expresses that
we desire the value of z to be d. With a poorly trained
function approximator f, z might be quite different
from its target value. Learning is the adjustment of
f’s parameters so as to minimize the deviation between

the actual value of z, and its target value, by modifying
the parameters of the function approximator f.

Credit Assignment

The key question is: How to assign credit, or blame,
between the error in the training command, and the
function approximator f. CES approaches this problem
in a similar way as Back-propagation: It uses gradient
descent to adjust its parameters (Rumelhart, Hinton, &
Williams 1986). In particular, let w be a parameter of
the function approximator f. In the most generic case,
CES automatically computes

oF
VwE = — 1
5 (1)
using the LMS error function
1
Bo= gy 2)

It then modifies the weight w in opposite direction of
the gradient

w +— —aV,FE (3)

where a > 0 is the familiar step size in gradient descent.

To compute V,, E, CES has to keep track of auxiliary
gradients: For example, when computing y in the code
segment above, CES also computes

dy
w0 (4)

Later, when computing z using y, CES notices that y is
annotated with a gradient field and computes the new
gradients

0z
s (5)

using the chain rule of differentiation—very much as in
Back-propagation, just forward in time.

When finally a training statement is encountered, the
weight updates are simply obtained via the product rule
of differentiation:

or 0z
VwE = — — 6
Y 0z Ow (6)
While this is mathematically straightforward, the
reader should not dismiss the complexity in the credit

assignment mechanism. Statements in C4+4 can be re-
cursive; variables can be used multiple times; they can
of course be part of the condition in while-loops; and
values can be influenced by a whole array of function
approximators—these all introduce difficulties in com-
puting gradients. However, all these cases are semanti-
cally straightforward. In the interest of brevity we omit
a discussion of the implementation details.

On a more fundamental note, the reader should also
be aware of the fact in most program code, gradients
would be flatly zero; and gradient descent would be
inapplicable for search in weight space. To see, consider
the following routine, which contains a simple if-then-
else statement:

double f(double x){
double y;
if (x > 0.5)
y = 1.0;
else
y = 0.0;
return y;

}
Clearly, the gradient

af(x)
o (7)

is 0 almost everywhere, except if x = 0.5 when the
(right-sided) gradient is co. In this light, gradient de-
scent may appear questionable a choice for parameter
estimation in CES.

Probabilistic Variables

Luckily, there is a solution. The issue of non-
differentiability brings us to the second idea in CES,
the concept of probabilistic computation. We regard this
concept to be equally important as the idea of learning,
but we chose not to emphasize it in this paper.

In short, probabilistic variables represent probability
density functions. They are derived from standard data
types and inherit many of their properties. For exam-
ple, the declaration

prob < double > x; (8)

declares a probabilistic variable x over base type
double.

What exactly is a probabilistic variable? In contract
to a conventional variable, which can only take a single
value, probabilistic variables can take multiple values,
each weighted by a probability. For example, the as-
signment

x=1,0.22,0.53,0.3; (9)

assigns to x a discrete distribution over the space
{1,2,3} with Pr(z = 1) = 0.2, Pr(x = 2) = 0.5, and
Pr(z = 3) = 0.3. Many other forms of probabilistic
assignments exist, such as

2 = UNIFORM(10,20); (10)

which assigns to # a uniform distribution in the interval
[10, 20].

The utility of probabilistic variables has been dis-
cussed in length in a recent paper (Thrun 1998). Here
we refer the reader to this literature. We only briefly
remark that computing with probabilistic variables is
analogous to conventional computing, with the under-
standing that a variable may take more than just one
value. Since in many embedded system applications,
computers are inherently uncertain, probabilistic vari-
able offer enhanced robustness with minimum effort on
the programmer’s side. Thus, probabilistic variables
are worthwhile in their own right, even for languages
that do not integrate learning.

In the context of this paper, however, the key ben-
efit of probabilistic variables is their utility for credit
assignment in learning. They are in fact a key enabling
factor for CES’s credit assignment mechanisms. This
is because with probabilistic variables, CES becomes
differentiable in many cases where conventional code
would not be.

To see, let us return the example used above to il-
lustrate the non-differentiability of C4++4 code. With
probabilistic variables, the corresponding code segment
reads

prob<double> f(prob<double> x){
prob<double> y;
if (x > 0.5)

y = 1.0;
else

y = 0.0;
return y;

}

The gradient of the procedure’s output with respect to
its input is given by

IPr(f(x) =1) 1 ifa>05
oPrie=a) { ~1 ifa<os)

and
OPr(f(x) = 0)
JPr(z = a)

for the two legal output values, 0 and 1. Thus, the
gradient does not vanish, and gradient descent leads to
a modification of the weights. This brief example can
be generalized to a large class of computations, as the
output of a probabilistic computation is usually smooth
in 1ts input values. Thus, we have illustrated the utility
of probabilistic variables in the context of the learning
language extension CES.

{—1 ifa>0.5 (12)

1 ifa<05

Implementation

How important are these ideas? How good is the lan-
guage extension really?

To elucidate these questions, we chose to re-
implement a common reference problem in mobile
robotics: a mail delivery robot. To truly investigate
the utility of learning and probabilistic computation,

¥ Py
i

wi i e Y

B

Figure 1: (a) The Real World Interface B21 robot used
in our research. (b) Schematics of the robot’s environ-
ment.

we programmed the robot from scratch, assuming no
other infrastructure than an interface that generates
sensor data (sonars, down-sampled camera images) and
that accepts basic robot motion commands (motor ve-
locities). Such interfaces are commonly found in mobile
robotics.

The purpose of the implementation was to evaluate
the relative advantage of a CES-like language over con-
ventional programming languages, such as C or C++.
In particular, we demanded the following functionality:

e The robot must wait in a designated parking location
for a mail carrier.

e It must accept delivery commands by the carrier,
communicated through visual arm gestures.

e It must reliably navigate through a populated hall-
way, while avoiding collisions with people and obsta-
cles.

e It must find the delivery locations, which in our
case are not recognizable from the momentary sen-
sor readings.

e It must honk a horn in its delivery locations, and wait
for person to pick up the mail.

e Finally, when all deliveries have been completed, it
must return to the parking position and continue the
delivery. The starting position is also not recogniz-
able from momentary sensor readings, thus finding
out that the robot is there requires careful bookkeep-
ing.

This scenario is relatively complex. Few existing mo-
bile robot systems are capable of providing the desired
functionality. Control programs for tasks this complex
usually possess in the order or 50,000 lines of code or
more. In our own lab, we recently developed a large-
scale software package capable of this and similar func-
tions, with an effort of over 10 man years (Burgard et
al. 1998) (~ 10° lines of code). The reader should no-
tice that our software is much more general than the
scenario above. However, we believe that traditional

left hand

right hand both hands

no gesture

Figure 2: Positive (top row) and negative (bottom row)
examples of gestures.

means of programming require significant amount of
time and program code to robustly control a robot with
the functionality above. Figures 1 and 2 show the robot,
its environment, and examples of gestures, respectively.
Table 1 shows our final implementation in CES, ca-
pable of performing the mail delivery function robustly.
As the reader quickly verifies, the entire code 1s only 137
lines long. Less than one day of programming time was
necessary to develop this implementation. Additionally,
at several points during the development the program
was trained through examples, whose collection and la-
beling took less of 2 hours total. The program and its
development is discussed in depth in (Thrun 1998).

Conclusion

This paper argues in favor of learning, or training, as
an alternative means of programming computers. We
briefly described a preliminary experiment using an ex-
tension of C++, called CES, that supports learning
from examples. In CES, programmers can leave para-
metric “gaps” that are filled by specifying the desired
input-output behavior of code segments through ex-
amples. A second key concept in CES, that of prob-
abilistic variables, facilitates the credit assignment nec-
essary to “fill these gaps.” CES’s built-in credit as-
signment mechanism uses gradient descent to translate
training examples into incremental parameter updates
during learning, crucially exploiting the differentiability
of probabilistic variables.

Initial experiments in a credible mobile robot domain
suggests a reduction of software development efforts by
more than an order of magnitude. A second example
was explored in (Thrun 1998), where a similar reduction
was observed for programming a state-of-the-art land-
mark localization algorithm. While these examples are
highly preliminary, they show some of the promise aris-
ing from this new programming paradigm. Based on
these initial findings, we are confident that a careful in-
tegration of learning into mainstream programming can
overcome significant barriers, thereby reducing costs of
software development. We furthermore conjecture that
additional benefits of integrating learning into program-

001: main(){

002:

003: // = = Declarations =
004: fa<vector<double>,
005: fa<prob<vector<double> >, prob<double> > netX(oneLayerNeuronet, 5),
006 : netY(oneLayerNeuronet, 5);
007: fa<vector<double>, prob<int> > netLeft(oneLayerNeuronet, 5),

008: netRight (oneLayerNeuronet, 5);

009: prob<double>
010: prob<double>
011: prob<double>

alpha, alphaLocal, probRotation;
thetalLocal, theta, transVel, rotVel;

x, xLocal, y, yLocal, probTransl;

012: prob<int> coin = {{0, 0.5}, {1. 0.5}};

013: prob<int> gostureLeft, gestureRight;

014: prob<vector<double >> newSonar(2);

015: double alphaTarget, scan[24], image[300];

018: double xTarget, yTarget, xGoal, yGoal, t, v;

017: struct { double rotation, transl; } odometryData;
018: struct { double x, y, dir; } stack[3];

019: int targetleft, targetRight;

020: int numGoals = 0, activeGoal;
021:

022: /=== === Initialization ==============

023: alpha = UNIFORH1D(0.0, H_PI);
024: theta = UNIFORH1D(0.0, H_PI);
025: x = XHOHE; y = YHOHE;

026:

027: Hain Loop ==============

028:

029: for (;;){

030:

031: ff mmmmm e Localization --------————————

032: GETSONAR(scan) ; // geot sonar scan
033: alphaLocal = netSonar.eval(scan) % H_PI;

034: alpha = multiply(alpha, alphaLocal);

035: probloop(alphalocal, coin; thetaLocal){

036: if (coin)

037: thetalocal = alphalocal;

038: else

039: thetalocal = alphalocal + H_PI;

040: ¥

041: theta = multiply(theta, thetaLocal);// robot’s orientation
042: probloop(theta; newSonar){

043: int i = int(theta / H_PI * 12.0);

044: int j = (i + 12) % 24;

045: if (scan[i] < 300.0) newSonar[0] = scan[i];

046 if (scan[j] < 300.0) newSonar[1] = scan[jl;

047: ¥

048: xLocal = netX.eval(newSonar);

049: yLocal = netY.eval(newSonar);

050: x = multiply(x, xLocal); // robot’s x coordinate
051: y = multiply(y, yLocal); // robot’s y coordinate
052:

053: GETODOH (ZodometryData) ; // geot odometry data
054: probRotation = prob<double>(odometryData.rotation)

055: + normalld(0.0, 0.1 * fabs(odometryData.rotation));
056 alpha += probRotation;

057: if (alpha < 0.0) alpha += H_PI;

058: if (alpha >= H_PI) alpha -= H_PI;

059: theta += probRotation; // new orientation
060: if (theta < 0.0) theta += 2.0 * H_PI;

061: if (theta >= 2.0 * H_PI) theta -= 2.0 % H_PI;

062: theta = probtrunc(theta, 0.01);

063: probTransl = (prob<double>) odometryData.transl

064: + NORHMAL1D(0.0, 0.1 * fabs(odometryData.transl));
065: = x + probTransl * cos(theta);

x
066 y = y + probTransl * sin(theta)
067: X.truncate(0.01) ;
068: y.truncate(0.01) ;

// new x coordinate
// new y coordinate

prob<double> > netSonar(oneLayerNeuronet, 5);

069: // ——mm————— Gesture Interface & Scheduler ----——---—-—--—-

070: GETIHMAGE(image) ;

071: gostureLeft = netLeft.eval(image);

072: gostureRight = netRight.eval(image);

073: if (numGoals == 0){ // wait for gesture
074: if (double(gestureLeft) > 0.5){

075: stack[numGoals J.x = X4; // location A on stack
076: stack[numGoals 1J.y = Yi;

077: stack[numGoals++] .dir = 1.0;

078: ¥

079: if (double(gestureRight) > 0.5){

080: stack[numGoals J.x = XB; // location B on stack
081: stack[numGoals 1J.y = YB;

082: stack[numGoals++] .dir = 1.0;

083: ¥

084: if (numGoals > 0){

085: stack[numGoals J.x = XHOHE; // HOHE location on stack
086: stack[numGoals 1J.y = YHOHE;

087: stack[numGoals++] .dir = -1.0;

088: activeGoal = 0;

089: ¥

090: ¥

091: olse if (stack[activeGoall.dir * // reached a goal?
092: (double(y) - stack[activeGoall.y) > 0.0){

093: SETVEL(0, 0); // stop robot

094: activeGoal = (activeGoal + 1) % depth;

095: if (activeGoal)

096: for (HORN(); !'GETBUTTON();); // wait for button
097: else

098: numGoals = 0;

099: ¥

100:

101: else{ // —————————-----—- Navigation --———-----———--—-
102: xGoal = stack[activeGoal].x;

103: yGoal = stack[activeGoall.y;

104: probloop(theta, X, ¥y, xGoal, yGoal;

105: transVel, rotVel){

106: double thetaGoal = atan2(y - yGoal, x - xGoal);

107: double thetaDiff = thetaGoal - theta; // location of goal
108: if (thetaDiff < -H_PI) thetaDiff += 2.0 % H_PI;

109: if (thetaDiff > H_PI) thetaDiff -= 2.0 % H_PI;

110: if (thetaDiff < 0.0)

111: rotVel = HAXROTVEL; // rotate left

112: else

113: rotVel = -HAXROTVEL; // rotate right

114: if (fabs(thetaDiff) > 0.25 * H_PI)

115: transVel = 0; // no translation
116: else

117: transVel = HAXTRANSVEL; // go ahead

118: ¥

119: v = double(rotVel); // convert to double
120: t = double(transVel); // convert to double
121: if (sonar[0] < 15.0 || sonar[23] < 15.0) t = 0.0;

122: SETVEL(t, v); // set velocity

123: ¥

124:

125: ff mmmmm e Training --------—-------

126: GETTARGET (2alphaTarget); // these command are
127: alpha.train(alphaTarget); // only enabled during
128: GETTARGET (&xTarget) ; // training. They are
129: x.train(xTarget) ; // removed afterwards.
130: GETTARGET (2yTarget) ;

131: y.train(yTarget);

132: GETTARGET (2targetLeft);

133: gostureLeft.train(targetLeft);

134: GETTARGET(2targetRight);

135: gostureRight .train(targetRight);

136: }

137: }

Table 1: The complete implementation of the mail delivery program. Line numbers have been added for the reader’s
convenience. Functions in capital letters (GET_... and SET_...) are part of the interface to the robot.

ming include the ability of code to adapt over its life-
time, and the reuse of program code that is almost,
but not quite, right. However, these conjectures are
certainly speculative, and more research is needed to
substantiate the claims made in this paper.

We conclude by remarking that the vast majority of
today’s computers are indeed programmed tediously by
hand. People and animals, in contrast, are “instructed”
through much richer means, including demonstrations,
explanations, environment interaction, qualitative feed-
back, and so on. We believe that by integrating learn-

ing into mainstream programming we can overcormne
existing barriers in the field of software development,
thereby reducing the effort involved in software develop-
ment, and facilitating the development of more robust
and reusable code.

Acknowledgments

This research benefitted tremendously through discus-
sions with Tom Mitchell, Frank Pfenning, and Sungwoo
Park, which is gratefully acknowledged.

This research is sponsored by the National Sci-

ence Foundation (and CAREER grant number IIS-
9876136 and regular grant number I1S-9877033), and by
DARPA-ATO via TACOM (contract number DAAEQT7-
98-C-L.032) and DARPA-ISO via Rome Labs (contract
number F30602-98-2-0137), which is gratefully acknowl-
edged. The views and conclusions contained in this
document are those of the author and should not be
interpreted as necessarily representing official policies
or endorsements, either expressed or implied, of the
United States Government or any of the sponsoring in-
stitutions.

References

Burgard, W.; A.B.; Cremers; Fox, D.; Hahnel, D
Lakemeyer, G.; Schulz, D.; Steiner, W.; and Thrun,
S. 1998. The interactive museum tour-guide robot.
In Proceedings of the AAAI Fifteenth National Con-
ference on Artificial Intelligence.

Craven, M. W., and Shavlik, J. W. 1994. Using sam-
pling and queries to extract rules fom trained neural
networks. In Proceedings of the Eleventh International
Conference on Machine Learning, 37-45. San Mateo,
CA: Morgan Kaufmann.

Friedrich, H.; Munch, S.; Dillman, R.; Bocionek, S.;
and Sassin, M. 1996. Robot programming by demon-
stration (rpd): Supporting the induction by human
interaction. Machine Learning 23(2/3):5-46.

Koza, J. 1992. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. Cambridge, MA: MIT Press.

Koza, J. 1994. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA:
MIT Press.

Lee, K.-F. 1990. Context-dependent phonetic hid-
den markov models for speaker-independent continu-
ous speech recognition. In Waibel, A., and Lee, K.-F.,
eds., Readings in Speech Recognition. San Mateo, CA:
Morgan Kaufmann Publishers, Inc. Also appeared in
the IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing.

Mitchell, T. 1997. Machine Learning. McGraw-Hill.

Pomerleau, D. 1993. Neural Network Perception for
Mobile Robot Guidance. Boston, MA: Kluwer Aca-
demic Publishers.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J.
1986. Learning internal representations by error prop-
agation. In Rumelhart, D. E., and McClelland, J. L.,
eds., Parallel Distributed Processing. Vol. I + II. MIT
Press.

Thrun, S. 1995. Extracting rules from artificial neural
networks with distributed representations. In Tesauro,
G.; Touretzky, D.; and Leen, T., eds., Advances
in Neural Information Processing Systems (NIPS) 7.
Cambridge, MA: MIT Press.

Thrun, S. 1998. A framework for programming em-
bedded systems: Initial design and results. Technical

Report CMU-CS-98-142, Carnegie Mellon University,
Computer Science Department, Pittsburgh, PA.

