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Abstract—This article describes Jeeves, one of the ¢ the location of the gate

winning entries in the 1996 AAAI mobile robot com- ¢ the location of the tennis balls

petition. Jeeves tied for first place in the finals of the ¢ the location and motion direction of the squiggle
competition, after it won both preliminary trials. A balls

key aspect in Jeeves'’s software design was the ability ¢ its own location with respect to the model,

to acquire a model of the environment. The model, ¢ whereit had been before, and what parts of the arena
a geometric map constructed from sensory data while were unexplored.

the robot performs its task, enabled Jeeves to sweep

the arena efficiently. It facilitated the retrieval of balls ~ Armed with the model, it was simple to determine a suit-
and their delivery at the gate, and it helped to avoid able search pattern. It was also straightforward to de-
unintended collisions with obstacles. This paper ar- termine appropriate pickup strategies, the location of the
gues that Jeeves’s success depended crucially on thegate, and the appropriate time for moving there in order
existence of the model. It also argues that models are to unload the balls. The model was constructed on-the-fly
generally useful in mobile robotics—even in tasks as based on sensory data, and did not require any additional
simple as the one faced in this competition. time or maneuvers. Not only did we found the model-
based approach to control to be extremely robust; we also
found it easy to program. Undoubtedly, the existence of a
model played the key role in Jeeves’s success.

Jeeves was the Carnegie Mellon entry in the event “cleanhis article outlines the major ideas in Jeeves software.
up a tennis court” at the 1996 AAAI mobile robot compe-It also argues more generally for the utility of models in
tition. Robots competing in this event were given 15 minmobile robotics. Using Jeeves and the AAAI mobile robot
utes to collect ten randomly scattered tennis balls alongompetition as an example, it discusses the role of models
with two self-propelled squiggle balls in an arena of sizén scalable mobile robot architectures.

9 by 5 meters, and to deliver them to a custom-built gate.

1 INTRODUCTION

A picture of Jeeves is shown in Figure 1. Jeeves was 2 HARDWARE

originally built as a service robot with an eye tOWardSJeeves's hardware has been designed and built by German

gommer.cialization', independent'lyofthe compe'tition. Th%lesign student Hans Nopper, in collaboration with Real
light-weight robot is equipped with a large rotating brush orld Interface Inc., a leading mobile robot manufacturer.

capable of capturing up to eight balls at a time. Apar he robot moves with an approximate maximum speed of
from the brush mechanisms, however, Jeeves’s hardw § cm per second. It is equipped with seven ultrasonic

e et o CombetiSycxamty senors (of which oy e were used i
its on-,board controller imposed severe limitations or,1 th ompetition), gywde-angle color camera and a high-speed
. Color-based vision system manufactured by Newton Re-
maximum command rate. search Labs. Prior to the competition, the vision system
So what made Jeeves as successful as it was? A key aspgss trained to recognize yellow tennis balls, pink squiggle
of Jeeves'’s success was the fact that its software integratgslls, and cyan markers that marked the gate. The vision
reactive and model-based control. While Jeeves performegstem proved extremely reliable during the competition,
its task, it gradually constructed a geometric map of itgenefiting from clear color cues provided by the objects.
environment, which modeled the following aspects: However, the visual range of the camera was below 1.2
meters, making Jeeves one of the most myopic robots on
¢ the location of the walls the stage. To pick up balls, Jeeves used a rotating brush



3 MODELS

Jeeves’s successru#t be attributed to hardware alone.
Various other teams employed robots that were capable of
capturing multiple balls at a time, and some of them had
a much more responsive hardware. Instead, an important
factor in Jeeves’s success was its software, whidngty
relied on the geometric model (map) of the environment
that was built on-the-fly.

This section describes the software components involved
in controlling Jeeves. Using data recorded at the compe-
tition finals as an example, Figure 2 highlights the major
components of Jeeves. The reader not interested in the
(details might inspect this figure and Figure 3, and then
directly move to the next section.

Figure 1: Jeeves, an entry from Carnegie Mellon Unive
sity. A large rotating brush lifts tennis balls into a ramp
inside the robot’s shell. To unload balls, Jeeves can reverse

the direction of the brush. Jeeves moves approximately 6b1 Filtering Sonar Measurements

cm/sec. When equipped with a basket, Jeeves can hold ap- ' o . o
proximately 100 balls—sufficiently many for a real tennisféevess sonars exhibited the typical characteristics of
court. sonar sensors: they seldomly measured the distance of

the nearest object within their main cone; instead, they of-
ten returned values that were significantly smaller or larger
than the “correct” proximity.

Contrary to a popular myth, sonar sensors are not partic-

ularly noisy. They just do not measure proximity. In-
capable of lifting balls into the interior of the robot. Thestead, they measure the time elapsed between emitting
gate, to which balls had to be delivered, consisted of and receiving a focuse@snd impulse. With a little bit of
small ramp (shielded by a curtain), just high enough tphysics, itis easy to see that for smooth objects chances to
keep the squiggle balls inside. To unload balls, Jeevesceive a sonar echo depend on the angle between the main
reversed the direction of its brush. sonar cone and the reflecting object. Sound waves that hit

Jeeves' control software was run off-board. on a remot® wall frontally are very likely to be reflected back in the

SUN Sparc 5, with which Jeeves communicéted throughcgrection of the sensor, whereas sound that hits a wall in a
9600 baud radio link. The major computational load wasteep angle is likely to be reflected away into a direction
due to the graphical control interface; neumting it, the where it cannot be detected. The latter effect is usually

remaining load was well below 20% of the available Com_referred to asotal reflection As a re'su'lt, only some of the
putational resources. The remote software received stafp'a" measurements reflect proximity, whereas others do
updates from the robot and its sensors at a frequency get.

10 Hz. Unfortunately, the maximum command rate folFortunately, trustworthy sonar measurements were easy to
changing the motion direction was only 2 Hz (or less) du@entify, due to the structured nature of the competition
to limitations of the on-board controller. When designinging. As part of its geometric model of the environment,
the software, special attention was also payed to the faitte robot continuously estimated its relative orientation to
that the radio link was unreliable. Often, the remote comthe surrounding walls. By comparing its own orientation
puter did not receive status reports for durations of severalith the pointing direction of each individual sensor and
seconds, and motion commands were frequently lost anle orientation of the walls, Jeeves identified which sensor
had to be issued multiple times. As a result, we avoidedias orthogonal to a wall, thus was likely to be “correct.”

open-loop control wherever possible. In addition, sonar measurement were also corrupted when-

Jeeves’'s most significant hardware advantage was #ser the motors drew too much power, as noticed above.
brush, which proved surprisingly capable and robust iRower consumption could be deduced from the robot’s sta-
picking up balls. Jeeves’s most crucial handicaps wertis report, by reconstructing its acceleration/deceleration
(1) the speed at which its on-board motion controller wagshen a measurement was taken. Only those sensor values
willing to accept commands, and (2) the extremely limthat passed both of these filters—angle to wall and total
ited visual range. Because of these limitations, chasingower consumption—were used for what is described in
squiggle balls around was not even an option. the remainder of this section.
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Figure 2: This figure summarizes Jeeves'’s performance in the competition finals: (a) The robot starts without a model.
(b) It approaches the first wall, as indicated by the projected sonars measurements. (c) After turning left, Jeeves detects
the first wall. (d) While extending the first wall, Jeeves finds a second one. (e) Jeeves turns, and falsely believes to
observe a gate marker. (f) After successfully capturing a tennis ball (see path), Jeeves observes the correct gate marker.
(9) The software continuously corrects errors in Jeeves’s odometry, heteatdé as thergular deviation between the

wall and the sonar measurements. (h) The third and (i) the fourth walls are found. (j) Jeeves picks up a second ball next
to a wall. (k) The sweep is complete and Jeeves returns to the correct gate. (I) All balls (including the squiggle balls)
are shuffled into the gate.
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Figure 3: To build and use a geometric model, it is important to know where relative to the model the robot is. This

figure compares the path followed by Jeeves during the competition finals (a) with and (b) without the error correction
mechanism described in the paper. Without it, the final dead-reckoning error is approximately 3.9 meter and 34
degrees—clearly too much for any practical application.

3.2 Finding Wall Segments orientation. Thus, wall segments incrementally increased
the environment model. The model finally could contain

Once sensor values are filtered appropriately, the vast mabitrarily many walls, as long as they were all parallel or

jority of them does correspond to proximity, and detectingrthogonal teeach other.

walls is a straightforward exercise. On Jeeves, the sonar

sensors were divided into three sets: the left sensor, the

right sensor, and three frontmost sensors (where each s&fw  position Control

sor angle differs from its neighbors by )5 Within each

set of sensor measurements, Jeeves checked whether or not

the last 4 to 20 measurements corresponded to a straidfat use a map, Jeeves had to know its relative location

line. If this was the case, the corresponding line segmettierein. Unfortunately, drift and slippage introduce noise

was considered a piece of a wall. As such it was used fimto dead-reckoning which, if not compensated, can lead

two purposes: augmenting the map, and identifying errot® a dramatic mismatch between the robot's internal be-

in the robot’s odometry. lief and reality. Figure 3 illustrates the mismatch, using
data from the competition finals as an example. After
3.3 Building Maps traversing the competition ring twice (approx. 15 min-

utes of autonomous robot operation), the cumulated dead-
Admittedly, building a map in an unpopulated arena whereackoning error amounts to approximately 3.9 meter and
all walls are either parallel or orthogonal simplifies the34 degrees—clearly too much for the map to be of any
matter. Whereas in our previous work onindoor robot naysractical use. This illustrates the importance of position
igation, we developed a more sophisticated probabilisticontrol in map-based mobile robotics.

approach for building integrated metric-topological MapSeeyes ysed wall segments to correct for dead-reckoning
[5], the restrictive nature of the competition ring e”able%rrors. Whenever if observed a wall segment, it checked

us to use the following non-probabilistic approach to mag jis grientation (modulo 9%) was reasonable close the

building. global wall orientation—in which case the difference was
When the robot found its first wall segment, it was considused to correct its internal orientation. It also checked
ered to be part of awall. The first wall segment was speci#l the wall segment was close to a wall in the model, in
in that it determined therinciple wall orientationof the  which case the spatial deviation, if any, was used to cor-
environment; all walls were only allowed to be parallelrect the robot’s internat-y-location. Both updates were
or orthogonal to the principal wall orientation. When ain proportion to the observed deviation. Experimentally,
new wall segment was observed, the robot checked if thige found that Jeeves could repeatedly operate in our Uni-
segment was part of an existing wall, in which case it exversity hallways for durations of several hours without
tended the existingwall. New walls were only added whetoosing its location. The position control mechanisms was
they were parallel or perpendicular to the principal waltrucial for using maps in the competition.



3.5 Target Point Navigation 3.8 Capturing Tennis Balls

Knowing the walls and the current location facilitates th%ﬁﬁ;ﬂgkﬁ:&% ::(fjerzirt]thcE:/?rEthlgvs\:/a{?drsci?pglérelcgsa

navigation to arbitrary target locations. Whenever poss|-_ . . : . L
ble, Jeeves approached a target point on a straight Iinl)gsmallylgnored any tennis ball in the interior of the arena

Jeeves also obeyed a 30 cm safety distance to the walg @i L% L SRRy ST PO 00 e
When moving to a target point that was within the 30 cm ping p y y

safety zone, it first moved to the nearest point outside thgereer;;blg aifl?— l;gnsc;;z?e ba”%'t?]e"’; ggﬂgevr\}i tﬂlijnetaoe Iggkcr?]f
safety zone, then turned and moved towards the target pom{ P P ay- )
safety zone were treated differently: Jeeves moved towards

so that it directly faced the adjacent wall. This two-ste o . : :
procedure ensured that Jeeves did not come unnecessgt\em with its brush carefully aligned with the wall, until

Ii .
close to walls, yet if it had to, its brush would be totally't %nally touched the wall. After the ball was picked up,

aligned with the wall—a necessary prerequisite for pickgﬁg\éi?frtit“”i'es to\t;e location V]:/hleflt;,‘rllt f;r?:]saw rt_:at wzéll :(r)]
ing up balls next to a wall and for dumping the balls into € pickup was successiul. Tinot, the same patter
the gate was repeated. This strategy proved extremely reliable in

exhaustively picking up all tennis balls in the arena.

) Itisinteresting to notice that in one of the preliminary com-

3.6 Moving Parallel to Walls petition runs, we temporarily modified the pickup strategy

so that the robot did not ignore balls in the interior of

Jeeves systematic sweeping pattern required that the roltlo¢ competition ring. Here the robot picked up interior
moved parallel to awall. It was repeatedly required that thiealls directly, whenever a ball was observed. Since ac-

robot moved with as little as 5 cm side clearance parallel tively picking up a ball makes the robot deviate from its
awall, at a velocity of 60 cm/sec. When moving with thatpre-planned sweeping path, it had to return to the point
small a side clearance at full speed, accurate localizatiavhere it first saw the ball and continue from there—quite
becomes a critical issue—particularly, since the robot'a time-consuming maneuver. As aresult, the time required
hardware prohibited changes of the motion directions atfar sweeping the arena was approximately doubled, and it
ratio of more than 2 Hz. took the entire competition time to sweep the arena only

Jeeves wall-following routines were based on target poir?tnce'
navigation. To move parallel to a wall, a target point . .
was generated periodically 5 meter ahead of the robot;® Capturing Squiggle Balls
whose distance to the wall was basically the desired wall . .
# uiggle balls were much harder to capture, since phys-

distance, plus a small term that counterbalanced deviatio g

from the desired distance. This strategy was successft'ffal limitations prohibited chasing them around. Jeeves

Jeeves never touched a wall unintendedly in any single nyﬁsuallytracked the squiggle balls and made every attempt

during the entire competition. Itis difficult toimagine that ' tChaS? :hgTh Whetn a qugtgle l:f)all was V'S',?Ie’ c.j]eevets
a purely reactive approache., an approach which bases extrapolated the motion direction from current and pas
its decision on its most recent sensgiit only, could have observations, and moved towards the anticipated next lo-

achieved the same result with the same precision. cation of the squiggle ball. Due to the slow command rate
(2 Hz), however, squiggle balls usually disappeared from

the perceptual field before even the second or third turn-

3.7 Systematic Exploration ing command could be issued. The reader may notice that

squiggle balls were the only aspect of the environment that

afyas not fully modeled. Jeeves was able to detect them in

1.2 meter range, but it forgot about them as soon as they
ﬁ’ét its visual field.

A key advantage of maps is that they enable robots to pl
For a task as simple as the one in the competition, howev
deliberative planning was not even necessary. Instead, t
exploration pattern was entirely predetermined. As soofhe modeling and chasing limitations did not impair the
as Jeeves identified the first wall segment, it begun it®bot’s ability to secessfully catch both squiggle balls.

systematic exploration by moving parallel to it. The parfor an arena as small as the competition ring, we quickly
allel motion was usually terminated by a frontal obstacléearned that it was extremely likely that both squiggle
(part of a different wall), which prompted the robot to turnballs were captured just by chance, within the allotted
around and to repeat the same pattern at an increased diste (15 minutes). In fact, in every single run—testing,

tance. As soon as the robetached a walbpposite to the preliminaries and finals included—, both squiggle balls
one it discovered first, it knew the arena had been sweptere captured within the first 10 minutes. We suspect
systematically, and exploration was finished. that even an immobile device with a brush would have



been equally likely to capture all squiggle balls within thdowing walls at a 5 cm distance at full speed, determining

allotted time. a strategy and time for picking up balls, moving back-
wards without bumping into obstacles, finding the gate,
3.10 Returning to the Gate and determining when to return to the gate. Obviously, the

. . internal model was crucial for Jeeves’s success at the com-
After capturing all balls, the task required Jeeves to MOVGetition, as many of these capabilities would have been
to the gate and to unload its balls. The gate was markefkficult to achieve without an internal model.

by two cyan markers, taped to the ground in front of the i i

gate. Jeeves was able to model multiple hypotheses fB£cently; there has been a more general discusbionta
the location of the gate. Whenever it saw a cyan marketh€ nature and the utility of models in robotics. It has been
it determined whether or not this marker had been seéifgued thathe environment is its own best moge}—
before. If the marker had not been seen before, it wed! argument that has often been interpreted in favor of
entered into the map as a new hypothesis for the locati¢factive approaches that maintain a minimum of internal
of the gate. Markers that had been seen before were usedgte- To investigate the validity of such a claim, one has
better estimate the exact coordinates of the marker, usiffg2€ careful in specifying as to what purpose the model is
a weighted average algorithm. supposed to servdaest for what?

Once Jeeves reached the other side of the arena, it terfHitdoubtedly, the environment is itsost accuratenodel;
nated its systematic sweeping pattern and moved back #gW can any other model be more accurate thafityea
the gate, where it reversed its brush direction to unloa€!f? Accuracy alone, however, is not sufficient for robot
the balls. If multiple hypotheses existed (as is the case fPntrol- To be of practical use, a model must alsabe
Figure 2, where the vision system accidentally mistook gessibleand unfo'rtunatelythe enqunment is often not its
reflection on the ground for a marker), it chose the one fd?¥/N most accessible model. In mobiabptics, the acces-
whichit had the most sensor evidence (total number of pix&iPility of the environment depends, among other things,
els). Jeeves maintained multiple hypotheses concerniff§ theperceptual ratioof the robot to its environment,
the location of the gate because we were unable to train thE- the ratio of the perceptual range of the robot relative

vision system so as to avoid false-positive measurement8. the size of its environment. The perceptual ratio is of

However, over time the gate usually provided orders dpractical importance because to gain knowledgguthe

magnitude more evidence than false-positive readings. environment beyond the perceptual range, a robot has to
actually move there. The accedéil of the environment,

3.11 Velocity Control and thus the utility of internal models, increases as the per-

ceptual ratio decreases; therefore, it seems to be plausible
The faster a robot moves, the faster it completes the tagkat robots which acquire and maintain internal models
This simple rule led us to make the robot almost alwayscale better to more complex environments than those that
move with its maximum velocity. However, sometimesdo not!

itis wise to move slower. Jeeves velocity was controlleg gy s jnvestigate scalability more concretely, using Jeeves
by the dynamic window approach described in [3]. 1N, the AAAI mobile robot compition as an example. To
essence, the dynamic window approach sets the velocify i ast jeeves's model-based approach, let us also con-
in accordance to the proximity of obstacles—assumingiger 4 purelyeactiverobot,i.e, a robot that makes deci-
the robot stays on its current trajectory. As aresult, Jeevegyng hased on a short history of perceptual input, with a
traveled at its maximum speed until it approached an ohginimm of internal state. A typical reactivelyot would
stacle, in which case it gracefully decelerated and flnal%Ove around somewhat randomly while possibly follow-

halted. ing a wall, until a ball appears in its visual field. A typical
reactive approach might then chase this ball, and after
4 THE CASE FORMODELS. SCALING UP a successfully capture, continue its random walk until it

Jeeves control strategy was based on a centralized yjomes across another ball or the gate, at which point it

ometric model. As described in the previous sectio ould either capture the ball or deposit previously cap-
; . b Nured balls into the gate. In fact, we suspect that variants
Jeeves memorized the location of walls, balls, and gates—

basically everything there was to be known for the tasfgf this reactive, modefree approach'were gmployed by
sdeveral other teams at the competition—with remarkable

of picking up balls. J?e"es control strategies ben(.af'tesuccess, as the entry by Newton Research Labs illustrates
from the existence of this model. For example, we quickl

learned that to pick up a ball next to a wall, the exact ari(_descnbed in a different paper in this volume).

I ! LT - -
gie between the robot’s brush and the wall mattered. The 1The obvious exceptionto our argument are robots that perform tasks

model made it very easy to a_lccurately cqntrol this anglenat require exclusively local sensor information—however, such tasks
The model also facilitated various other things, such as fokre often trivial and rarely of interest in robotics.




While a purely reactiveabot might perform well in an en-
vironment as small as the competition ring, it is difficult to
imagine that such a robot would scale up to more compld
environments. For example, consider

...an arena ten time as large. The larger the arena, t
smaller the perceptual ratio, and the more the robt
has to search. Since a purely reactigbat would
run danger to search the same part of the arena o
and over again, its chances to exhaustively cover t
arena within a given time are smaller than that o
a model-based robot. The advantage of systema
search increases with the size of the environme
While reactive (historyfree) search mightwork rea-
sonably well for finding balls as long as the numbe
of total balls is large, theoretical and empirical re
search on the complexity of search has shown th
history-free search strategies tend to be very ineff
cient for searching large environments exhaustivel

[4].

...an arena with ten times as many balls. More ball
would force a robot to return to the gate more fre
quently. A purely reactive approach would have
to search for the gate even if it has been there bc

fore. If the gate is hidden in an unaccessible corner. ) , : :
unlikely to be found by random motion, a purely re_Flgure_ 4: In the US, Professional tennis trqlners spend
active robot could easily waste enormous amoun estimated annual average of $6500 of their customers’

of time searching for the gate over and over agair{”oney letting them pick up balls—certainly not the most
gloved aspect of that sport.

whereas a model-based approach that rememberB
the location of the gate could move there directly—
just like Jeeves.

...the same task with a tenth of the time. Efficiency be- i i i
comes even more important as time becomes a linfS@€ environments with huge operasps, using proba-
iting factor. It is important to notice that models, Pilistic approaches based on models [2, 5].
if used the right way, do not slow robots down. InWe conclude by conjecturing that model-based approaches
fact, the opposite is the case. Jeeves'’s performaneeale better to more complex environments and complex
illustrates that models can enable a robot to mak&asks that people (outside the scientific community) re-
more rational action choices in real-time, yieldingally care about. While it might be tempting to program
more efficient control. Since models integrate mulrobots by connecting sensors directly to actuators, such
tiple sensor measurements, model-based robots teapproaches are unlikely to scale up and to provide the
also to be more robust to noise in perception thatevel of sophistication required in all but the most simple
purely reactive obots. mobile robotics applications.
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