
To Know or Not To Know:
On the Utility of Models in Mobile Robotics

Sebastian Thrun
Department of Computer Science

Carnegie Mellon University
http://www.cs.cmu.edu/�thrun

Abstract—This article describes Jeeves, one of the
winning entries in the 1996 AAAI mobile robot com-
petition. Jeeves tied for first place in the finals of the
competition, after it won both preliminary trials. A
key aspect in Jeeves’s software design was the ability
to acquire a model of the environment. The model,
a geometric map constructed from sensory data while
the robot performs its task, enabled Jeeves to sweep
the arena efficiently. It facilitated the retrieval of balls
and their delivery at the gate, and it helped to avoid
unintended collisions with obstacles. This paper ar-
gues that Jeeves’s success depended crucially on the
existence of the model. It also argues that models are
generally useful in mobile robotics—even in tasks as
simple as the one faced in this competition.

1 INTRODUCTION

Jeeves was the Carnegie Mellon entry in the event “clean
up a tennis court” at the 1996 AAAI mobile robot compe-
tition. Robots competing in this event were given 15 min-
utes to collect ten randomly scattered tennis balls along
with two self-propelled squiggle balls in an arena of size
9 by 5 meters, and to deliver them to a custom-built gate.

A picture of Jeeves is shown in Figure 1. Jeeves was
originally built as a service robot with an eye towards
commercialization, independentlyof the competition. The
light-weight robot is equipped with a large rotating brush,
capable of capturing up to eight balls at a time. Apart
from the brush mechanisms, however, Jeeves’s hardware
was not much better than that of most of its competitors.
In fact, Jeeves’s visual range was extremely limited, and
its on-board controller imposed severe limitations on the
maximum command rate.

So what made Jeeves as successful as it was? A key aspect
of Jeeves’s success was the fact that its software integrated
reactiveand model-based control. WhileJeeves performed
its task, it gradually constructed a geometric map of its
environment, which modeled the following aspects:

� the location of the walls

� the location of the gate
� the location of the tennis balls
� the location and motion direction of the squiggle

balls
� its own location with respect to the model,
� where it had been before, and what parts of the arena

were unexplored.

Armed with the model, it was simple to determine a suit-
able search pattern. It was also straightforward to de-
termine appropriate pickup strategies, the location of the
gate, and the appropriate time for moving there in order
to unload the balls. The model was constructed on-the-fly
based on sensory data, and did not require any additional
time or maneuvers. Not only did we found the model-
based approach to control to be extremely robust; we also
found it easy to program. Undoubtedly, the existence of a
model played the key role in Jeeves’s success.

This article outlines the major ideas in Jeeves software.
It also argues more generally for the utility of models in
mobile robotics. Using Jeeves and the AAAI mobile robot
competition as an example, it discusses the role of models
in scalable mobile robot architectures.

2 HARDWARE

Jeeves’s hardware has been designed and built by German
design student Hans Nopper, in collaboration with Real
World Interface Inc., a leading mobile robot manufacturer.
The robot moves with an approximate maximum speed of
60 cm per second. It is equipped with seven ultrasonic
proximity sensors (of which only five were used in the
competition), a wide-angle color camera and a high-speed
color-based vision system manufactured by Newton Re-
search Labs. Prior to the competition, the vision system
was trained to recognize yellow tennis balls, pink squiggle
balls, and cyan markers that marked the gate. The vision
system proved extremely reliable during the competition,
benefiting from clear color cues provided by the objects.
However, the visual range of the camera was below 1.2
meters, making Jeeves one of the most myopic robots on
the stage. To pick up balls, Jeeves used a rotating brush

Figure 1: Jeeves, an entry from Carnegie Mellon Univer-
sity. A large rotating brush lifts tennis balls into a ramp
inside the robot’sshell. To unload balls, Jeeves can reverse
the direction of the brush. Jeeves moves approximately 60
cm/sec. When equipped with a basket, Jeeves can hold ap-
proximately 100 balls—sufficiently many for a real tennis
court.

capable of lifting balls into the interior of the robot. The
gate, to which balls had to be delivered, consisted of a
small ramp (shielded by a curtain), just high enough to
keep the squiggle balls inside. To unload balls, Jeeves
reversed the direction of its brush.

Jeeves’ control software was run off-board, on a remote
SUN Sparc 5, with which Jeeves communicated through a
9600 baud radio link. The major computational load was
due to the graphical control interface; not counting it, the
remaining load was well below 20% of the available com-
putational resources. The remote software received status
updates from the robot and its sensors at a frequency of
10 Hz. Unfortunately, the maximum command rate for
changing the motion direction was only 2 Hz (or less) due
to limitations of the on-board controller. When designing
the software, special attention was also payed to the fact
that the radio link was unreliable. Often, the remote com-
puter did not receive status reports for durations of several
seconds, and motion commands were frequently lost and
had to be issued multiple times. As a result, we avoided
open-loop control wherever possible.

Jeeves’s most significant hardware advantage was its
brush, which proved surprisingly capable and robust in
picking up balls. Jeeves’s most crucial handicaps were
(1) the speed at which its on-board motion controller was
willing to accept commands, and (2) the extremely lim-
ited visual range. Because of these limitations, chasing
squiggle balls around was not even an option.

3 MODELS

Jeeves’s success cannot be attributed to hardware alone.
Various other teams employed robots that were capable of
capturing multiple balls at a time, and some of them had
a much more responsive hardware. Instead, an important
factor in Jeeves’s success was its software, which strongly
relied on the geometric model (map) of the environment
that was built on-the-fly.

This section describes the software components involved
in controlling Jeeves. Using data recorded at the compe-
tition finals as an example, Figure 2 highlights the major
components of Jeeves. The reader not interested in the
details might inspect this figure and Figure 3, and then
directly move to the next section.

3.1 Filtering Sonar Measurements

Jeeves’s sonars exhibited the typical characteristics of
sonar sensors: they seldomly measured the distance of
the nearest object within their main cone; instead, they of-
ten returned values that were significantly smaller or larger
than the “correct” proximity.

Contrary to a popular myth, sonar sensors are not partic-
ularly noisy. They just do not measure proximity. In-
stead, they measure the time elapsed between emitting
and receiving a focused sound impulse. With a little bit of
physics, it is easy to see that for smooth objects chances to
receive a sonar echo depend on the angle between the main
sonar cone and the reflecting object. Sound waves that hit
a wall frontally are very likely to be reflected back in the
direction of the sensor, whereas sound that hits a wall in a
steep angle is likely to be reflected away into a direction
where it cannot be detected. The latter effect is usually
referred to astotal reflection. As a result, only some of the
sonar measurements reflect proximity, whereas others do
not.

Fortunately, trustworthy sonar measurements were easy to
identify, due to the structured nature of the competition
ring. As part of its geometric model of the environment,
the robot continuously estimated its relative orientation to
the surrounding walls. By comparing its own orientation
with the pointing direction of each individual sensor and
the orientation of the walls, Jeeves identified which sensor
was orthogonal to a wall, thus was likely to be “correct.”

In addition, sonar measurement were also corrupted when-
ever the motors drew too much power, as noticed above.
Power consumption could be deduced from the robot’s sta-
tus report, by reconstructing its acceleration/deceleration
when a measurement was taken. Only those sensor values
that passed both of these filters—angle to wall and total
power consumption—were used for what is described in
the remainder of this section.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 2: This figure summarizes Jeeves’s performance in the competition finals: (a) The robot starts without a model.
(b) It approaches the first wall, as indicated by the projected sonars measurements. (c) After turning left, Jeeves detects
the first wall. (d) While extending the first wall, Jeeves finds a second one. (e) Jeeves turns, and falsely believes to
observe a gate marker. (f) After successfully capturing a tennis ball (see path), Jeeves observes the correct gate marker.
(g) The software continuously corrects errors in Jeeves’s odometry, here noticeable as the angular deviation between the
wall and the sonar measurements. (h) The third and (i) the fourth walls are found. (j) Jeeves picks up a second ball next
to a wall. (k) The sweep is complete and Jeeves returns to the correct gate. (l) All balls (including the squiggle balls)
are shuffled into the gate.

(a) (b)

Figure 3: To build and use a geometric model, it is important to know where relative to the model the robot is. This
figure compares the path followed by Jeeves during the competition finals (a) with and (b) without the error correction
mechanism described in the paper. Without it, the final dead-reckoning error is approximately 3.9 meter and 34
degrees—clearly too much for any practical application.

3.2 Finding Wall Segments

Once sensor values are filtered appropriately, the vast ma-
jority of them does correspond to proximity, and detecting
walls is a straightforward exercise. On Jeeves, the sonar
sensors were divided into three sets: the left sensor, the
right sensor, and three frontmost sensors (where each sen-
sor angle differs from its neighbors by 15�). Within each
set of sensor measurements, Jeeves checked whether or not
the last 4 to 20 measurements corresponded to a straight
line. If this was the case, the corresponding line segment
was considered a piece of a wall. As such it was used for
two purposes: augmenting the map, and identifying errors
in the robot’s odometry.

3.3 Building Maps

Admittedly, buildinga map in an unpopulated arena where
all walls are either parallel or orthogonal simplifies the
matter. Whereas in our previous work on indoor robot nav-
igation, we developed a more sophisticated probabilistic
approach for building integrated metric-topological maps
[5], the restrictive nature of the competition ring enabled
us to use the following non-probabilistic approach to map
building.

When the robot found its first wall segment, it was consid-
ered to be part of a wall. The first wall segment was special
in that it determined theprinciple wall orientationof the
environment; all walls were only allowed to be parallel
or orthogonal to the principal wall orientation. When a
new wall segment was observed, the robot checked if this
segment was part of an existing wall, in which case it ex-
tended the existing wall. New walls were only added when
they were parallel or perpendicular to the principal wall

orientation. Thus, wall segments incrementally increased
the environment model. The model finally could contain
arbitrarily many walls, as long as they were all parallel or
orthogonal toeach other.

3.4 Position Control

To use a map, Jeeves had to know its relative location
therein. Unfortunately, drift and slippage introduce noise
into dead-reckoning which, if not compensated, can lead
to a dramatic mismatch between the robot’s internal be-
lief and reality. Figure 3 illustrates the mismatch, using
data from the competition finals as an example. After
traversing the competition ring twice (approx. 15 min-
utes of autonomous robot operation), the cumulated dead-
reckoning error amounts to approximately 3.9 meter and
34 degrees—clearly too much for the map to be of any
practical use. This illustrates the importance of position
control in map-based mobile robotics.

Jeeves used wall segments to correct for dead-reckoning
errors. Whenever if observed a wall segment, it checked
if its orientation (modulo 90�) was reasonable close the
global wall orientation—in which case the difference was
used to correct its internal orientation. It also checked
if the wall segment was close to a wall in the model, in
which case the spatial deviation, if any, was used to cor-
rect the robot’s internalx-y-location. Both updates were
in proportion to the observed deviation. Experimentally,
we found that Jeeves could repeatedly operate in our Uni-
versity hallways for durations of several hours without
loosing its location. The position control mechanisms was
crucial for using maps in the competition.

3.5 Target Point Navigation

Knowing the walls and the current location facilitates the
navigation to arbitrary target locations. Whenever possi-
ble, Jeeves approached a target point on a straight line.
Jeeves also obeyed a 30 cm safety distance to the walls.
When moving to a target point that was within the 30 cm
safety zone, it first moved to the nearest point outside the
safety zone, then turned and moved towards the target point
so that it directly faced the adjacent wall. This two-step
procedure ensured that Jeeves did not come unnecessarily
close to walls, yet if it had to, its brush would be totally
aligned with the wall—a necessary prerequisite for pick-
ing up balls next to a wall and for dumping the balls into
the gate.

3.6 Moving Parallel to Walls

Jeeves systematic sweeping pattern required that the robot
moved parallel to a wall. It was repeatedly required that the
robot moved with as littleas 5 cm side clearance parallel to
a wall, at a velocity of 60 cm/sec. When moving with that
small a side clearance at full speed, accurate localization
becomes a critical issue—particularly, since the robot’s
hardware prohibited changes of the motion directions at a
ratio of more than 2 Hz.

Jeeves wall-following routines were based on target point
navigation. To move parallel to a wall, a target point
was generated periodically 5 meter ahead of the robot,
whose distance to the wall was basically the desired wall
distance, plus a small term that counterbalanced deviations
from the desired distance. This strategy was successful:
Jeeves never touched a wall unintendedly in any single run
during the entire competition. It is difficult to imagine that
a purely reactive approach,i.e., an approach which bases
its decision on its most recent sensor input only, could have
achieved the same result with the same precision.

3.7 Systematic Exploration

A key advantage of maps is that they enable robots to plan.
For a task as simple as the one in the competition, however,
deliberative planning was not even necessary. Instead, the
exploration pattern was entirely predetermined. As soon
as Jeeves identified the first wall segment, it begun its
systematic exploration by moving parallel to it. The par-
allel motion was usually terminated by a frontal obstacle
(part of a different wall), which prompted the robot to turn
around and to repeat the same pattern at an increased dis-
tance. As soon as the robot reached a wallopposite to the
one it discovered first, it knew the arena had been swept
systematically, and exploration was finished.

3.8 Capturing Tennis Balls

Jeeves employed two different strategies for capturing a
ball: Moving towards it and not moving towards it. Jeeves
basically ignored any tennis ball in the interior of the arena
(beyond the 30 cm safety zone), based on the observation
that its sweeping pattern systematically covered the entire
arena. It also ignored balls in a corner, due to lack of
a reliable pick-up strategy. Other balls within the 30 cm
safety zonewere treated differently: Jeeves moved towards
them with its brush carefully aligned with the wall, until
it finally touched the wall. After the ball was picked up,
Jeeves returned to the location where it first saw that wall to
check if the pickup was successful. If not, the same pattern
was repeated. This strategy proved extremely reliable in
exhaustively picking up all tennis balls in the arena.

It is interesting to notice that in one of the preliminary com-
petition runs, we temporarily modified the pickup strategy
so that the robot did not ignore balls in the interior of
the competition ring. Here the robot picked up interior
balls directly, whenever a ball was observed. Since ac-
tively picking up a ball makes the robot deviate from its
pre-planned sweeping path, it had to return to the point
where it first saw the ball and continue from there—quite
a time-consuming maneuver. As a result, the time required
for sweeping the arena was approximately doubled, and it
took the entire competition time to sweep the arena only
once.

3.9 Capturing Squiggle Balls

Squiggle balls were much harder to capture, since phys-
ical limitations prohibited chasing them around. Jeeves
visually tracked the squiggle balls and made every attempt
to chase them. When a squiggle ball was visible, Jeeves
extrapolated the motion direction from current and past
observations, and moved towards the anticipated next lo-
cation of the squiggle ball. Due to the slow command rate
(2 Hz), however, squiggle balls usually disappeared from
the perceptual field before even the second or third turn-
ing command could be issued. The reader may notice that
squiggleballs were the only aspect of the environment that
was not fully modeled. Jeeves was able to detect them in
a 1.2 meter range, but it forgot about them as soon as they
left its visual field.

The modeling and chasing limitations did not impair the
robot’s ability to successfully catch both squiggle balls.
For an arena as small as the competition ring, we quickly
learned that it was extremely likely that both squiggle
balls were captured just by chance, within the allotted
time (15 minutes). In fact, in every single run—testing,
preliminaries and finals included—, both squiggle balls
were captured within the first 10 minutes. We suspect
that even an immobile device with a brush would have

been equally likely to capture all squiggle balls within the
allotted time.

3.10 Returning to the Gate

After capturing all balls, the task required Jeeves to move
to the gate and to unload its balls. The gate was marked
by two cyan markers, taped to the ground in front of the
gate. Jeeves was able to model multiple hypotheses for
the location of the gate. Whenever it saw a cyan marker,
it determined whether or not this marker had been seen
before. If the marker had not been seen before, it was
entered into the map as a new hypothesis for the location
of the gate. Markers that had been seen before were used to
better estimate the exact coordinates of the marker, using
a weighted average algorithm.

Once Jeeves reached the other side of the arena, it termi-
nated its systematic sweeping pattern and moved back to
the gate, where it reversed its brush direction to unload
the balls. If multiple hypotheses existed (as is the case in
Figure 2, where the vision system accidentally mistook a
reflection on the ground for a marker), it chose the one for
which it had themost sensor evidence (total number of pix-
els). Jeeves maintained multiple hypotheses concerning
the location of the gate because we were unable to train the
vision system so as to avoid false-positive measurements.
However, over time the gate usually provided orders of
magnitude more evidence than false-positive readings.

3.11 Velocity Control

The faster a robot moves, the faster it completes the task.
This simple rule led us to make the robot almost always
move with its maximum velocity. However, sometimes
it is wise to move slower. Jeeves velocity was controlled
by the dynamic window approach described in [3]. In
essence, the dynamic window approach sets the velocity
in accordance to the proximity of obstacles—assuming
the robot stays on its current trajectory. As a result, Jeeves
traveled at its maximum speed until it approached an ob-
stacle, in which case it gracefully decelerated and finally
halted.

4 THE CASE FORMODELS: SCALING UP

Jeeves control strategy was based on a centralized ge-
ometric model. As described in the previous section,
Jeeves memorized the location of walls, balls, and gates—
basically everything there was to be known for the task
of picking up balls. Jeeves control strategies benefited
from the existence of this model. For example, we quickly
learned that to pick up a ball next to a wall, the exact an-
gle between the robot’s brush and the wall mattered. The
model made it very easy to accurately control this angle.
The model also facilitated various other things, such as fol-

lowing walls at a 5 cm distance at full speed, determining
a strategy and time for picking up balls, moving back-
wards without bumping into obstacles, finding the gate,
and determining when to return to the gate. Obviously, the
internal model was crucial for Jeeves’s success at the com-
petition, as many of these capabilities would have been
difficult to achieve without an internal model.

Recently, there has been a more general discussion about
the nature and the utility of models in robotics. It has been
argued thatthe environment is its own best model[1]—
an argument that has often been interpreted in favor of
reactive approaches that maintain a minimum of internal
state. To investigate the validity of such a claim, one has
to be careful in specifying as to what purpose the model is
supposed to serve:best for what?

Undoubtedly, the environment is itsmost accuratemodel;
how can any other model be more accurate than reality
itself? Accuracy alone, however, is not sufficient for robot
control. To be of practical use, a model must also beac-
cessible, and unfortunately the environment is often not its
own most accessible model. In mobile robotics, the acces-
sibility of the environment depends, among other things,
on theperceptual ratioof the robot to its environment,
i.e., the ratio of the perceptual range of the robot relative
to the size of its environment. The perceptual ratio is of
practical importance because to gain knowledge about the
environment beyond the perceptual range, a robot has to
actually move there. The accessibility of the environment,
and thus the utilityof internal models, increases as the per-
ceptual ratio decreases; therefore, it seems to be plausible
that robots which acquire and maintain internal models
scale better to more complex environments than those that
do not.1

Let us investigate scalability more concretely, using Jeeves
and the AAAI mobile robot competition as an example. To
contrast Jeeves’s model-based approach, let us also con-
sider a purelyreactiverobot,i.e., a robot that makes deci-
sions based on a short history of perceptual input, with a
minimum of internal state. A typical reactive robot would
move around somewhat randomly while possibly follow-
ing a wall, until a ball appears in its visual field. A typical
reactive approach might then chase this ball, and after
a successfully capture, continue its random walk until it
comes across another ball or the gate, at which point it
would either capture the ball or deposit previously cap-
tured balls into the gate. In fact, we suspect that variants
of this reactive, model-free approach were employed by
several other teams at the competition—with remarkable
success, as the entry by Newton Research Labs illustrates
(described in a different paper in this volume).

1The obvious exception to our argument are robots that perform tasks
that require exclusively local sensor information—however, such tasks
are often trivial and rarely of interest in robotics.

While a purely reactive robot might perform well in an en-
vironment as small as the competition ring, it is difficult to
imagine that such a robot would scale up to more complex
environments. For example, consider

: : : an arena ten time as large. The larger the arena, the
smaller the perceptual ratio, and the more the robot
has to search. Since a purely reactive robot would
run danger to search the same part of the arena over
and over again, its chances to exhaustively cover the
arena within a given time are smaller than that of
a model-based robot. The advantage of systematic
search increases with the size of the environment.
While reactive (history-free) search might work rea-
sonably well for finding balls as long as the number
of total balls is large, theoretical and empirical re-
search on the complexity of search has shown that
history-free search strategies tend to be very ineffi-
cient for searching large environments exhaustively
[4].

: : : an arena with ten times as many balls. More balls
would force a robot to return to the gate more fre-
quently. A purely reactive approach would have
to search for the gate even if it has been there be-
fore. If the gate is hidden in an unaccessible corner
unlikely to be found by random motion, a purely re-
active robot could easily waste enormous amounts
of time searching for the gate over and over again,
whereas a model-based approach that remembered
the location of the gate could move there directly—
just like Jeeves.

: : : the same task with a tenth of the time. Efficiency be-
comes even more important as time becomes a lim-
iting factor. It is important to notice that models,
if used the right way, do not slow robots down. In
fact, the opposite is the case. Jeeves’s performance
illustrates that models can enable a robot to make
more rational action choices in real-time, yielding
more efficient control. Since models integrate mul-
tiplesensor measurements, model-based robots tend
also to be more robust to noise in perception than
purely reactive robots.

While it should not be dismissed that Jeeves’s control
software—in its current version—also faces some scaling
limitations, due to its inability to handle non-orthogonal
walls or huge open spaces, the scaling limitationsof Jeeves
are not caused by its model; instead, they carefully ex-
ploit the restrictive nature of the task and the environment.
For example, a simple one-line change in Jeeves’s soft-
ware would have enabled Jeeves to model arbitrary, non-
orthogonal walls. In our previous research, we have suc-
cessfully demonstrated robust localization even in large-

Figure 4: In the US, Professional tennis trainers spend
an estimated annual average of $6500 of their customers’
money letting them pick up balls—certainly not the most
beloved aspect of that sport.

scale environments with huge open spaces, using proba-
bilistic approaches based on models [2, 5].

We conclude by conjecturing that model-based approaches
scale better to more complex environments and complex
tasks that people (outside the scientific community) re-
ally care about. While it might be tempting to program
robots by connecting sensors directly to actuators, such
approaches are unlikely to scale up and to provide the
level of sophistication required in all but the most simple
mobile robotics applications.

ACKNOWLEDGMENT

The author would like to thank Hans Nopper and Grinnell
More from Real World Interface Inc. for designing and
building the hardware. Jeeves would not exist without the
enthusiastic initiative of Hans Nopper. The author would
also like to thank Randy Sargent, Anne Wright, and Carl
Witty from Newton Research Labs for their help setting
up the vision system, and Shyjan Mahamud for his initial
help training it. The name Jeeves was suggested by Greg

Armstrong.

REFERENCES

[1] Brooks, R. Intelligence without reason. in: Proceed-
ings of IJCAI-91, IJCAI, Inc. 1991, pp. 569–595.

[2] Burgard, W., Fox, D., Hennig, D., and Schmidt, T.
Estimating the Absolute Position of a Mobile Robot
Using Position Probability Grids. in: Proceedings of
the Thirteenth National Conference on Artificial
Intelligence, AAAI. AAAI Press/MIT Press, Menlo
Park, 1996.

[3] Fox, D., Burgard, W., and Thrun, S.The Dynamic
Window Approach to Collision Avoidance. IEEE
Robotics and Automation, to appear.(also appeared
as Technical Report IAI-TR-95-13, Universityof Bonn,
1995).

[4] Koenig,S. and Simmons, R. G.Complexity Analysis of
Real-Time Reinforcement Learning. in: Proceeding
of the Eleventh National Conference on Artificial
IntelligenceAAAI-93 , AAAI. AAAI Press/The MIT
Press, Menlo Park, CA, 1993, pp. 99–105.

[5] Thrun, S., Bücken, A., Burgard, W., Fox, D.,
Fröhlinghaus, T., Hennig, D., Hofmann, T., Krell, M.,
and Schimdt, T.Map Learning and High-Speed Nav-
igation in RHINO. in: AI-based Mobile Robots:
Case studies of successful robot systems, edited by
D. Kortenkamp, R. Bonasso, and R. Murphy. MIT
Press, Cambridge, MA, to appear.

ABOUT THE AUTHOR

Sebastian Thrun is member of the
research faculty at CMU’s Com-
puter Science Department. He
earned his Ph.D. from the Univer-
sity of Bonn, Germany, in 1995.
Thrun’s research interests lie in
machine learning and robotics.

