EE 42/100: Lecture 8

1st-Order RC Transient Example, Introduction to 2nd-Order Transients

Circuits with non-DC Sources

Recall that the solution to our ODEs is

$$x(t) = x_c(t) + x_p(t) = Ke^{-t/\tau} + x_p(t)$$

- Particular solution is constant for DC sources.
- Allows us to plug in final condition found using DC steady-state.

• But in general, the particular solution may not be constant!

 This circuit looks like another innocent RC circuit, but... the source is sinusoidal!

• Governing ODE:
$$v_C(t) + \frac{dv_C(t)}{dt} = 5\sin 2t$$

- Because the forcing function is now sinusoidal, so is the particular solution.
- We now want a part. solution of the form

$$v_{Cp}(t) = A\sin 2t + B\cos 2t$$

- We will plug this solution back into the ODE to solve for the constants
 - No DC steady-state final condition!

• We plug $v_{Cp}(t) = A \sin 2t + B \cos 2t$ into the ODE:

$$v_C(t) + \frac{dv_C(t)}{dt} = 5\sin 2t$$

 $A\sin 2t + B\cos 2t + 2A\cos 2t - 2B\sin 2t = 5\sin 2t$

 The sine terms must sum to 5, while the cosine terms must sum to 0.

We obtain a system of linear equations:

$$A - 2B = 5$$
$$B + 2A = 0$$

- The solution is A=1, B=-2
- Thus, $v_{Cp}(t) = \sin 2t 2\cos 2t$

Last step: homogeneous solution

$$v_{Ch}(t) = Ke^{-t/\tau} = Ke^{-t}, \tau = 1$$

Combine with the particular solution:

$$v_C(t) = \sin 2t - 2\cos 2t + Ke^{-t}$$

Finally, use initial condition to solve for K.

Capacitor is initially uncharged:

$$v_C(0) = 0 = \sin 0 - 2\cos 0 + Ke^0 = -2 + K$$

• We have finally completed the solution:

$$v_C(t) = \sin 2t - 2\cos 2t + 2e^{-t}$$
$$= \sqrt{5}\cos(2t + 3.605) + 2e^{-t}$$

Notice frequency is unchanged!

Take a look at the voltage waveform:

 As before, an exponential natural response initially dominates; then it yields to the forced response as time passes

2ND-ORDER RLC CIRCUITS

2nd-Order Circuits

 When we have more than 1 energy storage device, we get higher order ODEs.

 Comp. solution becomes much more complicated than just exponential function.

Effects: Oscillation, ringing, damping

LC Tank

- Suppose C has some initial charge V_0
 - Close the switch at t = 0
 - What's the behavior of *i(t)*?

- Neither element dissipates energy!
- We should not see anything like a decaying exponential.

LC Tank

• KVL loop:
$$L\frac{di(t)}{dt} + \frac{1}{C}\int i(t)dt = 0$$

Differentiate and rearrange:

$$\frac{d^2i(t)}{dt^2} + \frac{1}{LC}i(t) = 0$$

where $\omega_0 = \frac{1}{\sqrt{LC}}$ is the resonant frequency

LC Tank Solution

- We want to solve $\frac{d^2i(t)}{dt^2} + \omega_0^2i(t) = 0$
- The complementary solution is

$$i(t) = A\sin\omega_0 t + B\cos\omega_0 t$$

- Initial conditions: $i(0_+) = 0$
 - Inductor current cannot change instantly

$$i(t) = A \sin \omega_0 t$$

LC Tank Solution

- Can solve for the amplitude constant using 1st derivative initial condition
- More importantly, we see that the natural response is a sinusoidal function
 - Frequency determined by values of L and C

 Current, voltage, and energy simply slosh back and forth between the two devices!

Series RLC Circuit

RLC Circuit

- Voltage
- Current
- Capacitance
- Inductance
- Resistance

Spring-Mass-Damper

- Force
- Velocity
- Spring
- Mass
- Damper

Series RLC Circuit

• KVL loop:
$$Ri(t) + \frac{1}{C} \int i(t)dt + L \frac{di(t)}{dt} = v_s(t)$$

■ Differentiate:
$$R\frac{di(t)}{dt} + \frac{1}{C}i(t) + L\frac{d^2i(t)}{dt^2} = \frac{dv_s(t)}{dt}$$

■ Divide by L:
$$\frac{d^2i(t)}{dt^2} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = \frac{1}{L}\frac{dv_s(t)}{dt}$$

General Form of ODE

• All ODEs can be written as follows:

$$\frac{d^2x(t)}{dt^2} + 2\alpha \frac{dx(t)}{dt} + \omega_0^2 x(t) = f(t)$$

 The particular solution / forced response depends on the form of forcing function

Homogeneous Equation

$$\frac{d^2x(t)}{dt^2} + 2\alpha \frac{dx(t)}{dt} + \omega_0^2 x(t) = 0$$

- The complementary solution is much more complex now!
- Depends on the following parameters:
 - Damping coefficient
 - Resonant frequency
 - Damping ratio

$$\alpha = R/2L$$

$$\omega_0 = 1/\sqrt{LC}$$

$$\zeta = \alpha/\omega_0$$

Damping Coefficient

$$\alpha = \frac{R}{2L}$$

- Larger coefficient = more damping
- Mechanical analogue: friction

- Intuitively, resistance slows down current flow -> greater decay
- But inductance tries to keep current going

Damping Ratio

$$\zeta = \frac{\alpha}{\omega_0}$$

- The damping ratio tells us whether damping or oscillating dominates
- We get THREE (3!) different comp.
 solutions depending on its value

 Physically, does the current oscillate first, or does it just die out exponentially?

Overdamped Response

$$\zeta > 1, \quad \alpha > \omega_0$$

- Damping dominates; resistance is too (damn) high, preventing oscillations.
- Current decays at a rate determined by

Underdamped Response

$$\zeta < 1, \quad \alpha < \omega_0$$

- Damping is still present, but not strong enough to prevent oscillation
- Frequency of oscillation proportional to ω_0

Critically Damped Response

$$\zeta = 1, \quad \alpha = \omega_0$$

- This response decays as fast as possible without causing any oscillations.
 - Important for systems that need to settle down quickly without overshooting.

Summary

Comparison of responses with different

damping ratios

 Notice the tradeoff between initial overshoot and decay rate

Source: Wikipedia, RLC Transient Plot.svg

Summary

- We will not be quantitatively solving for the comp. solutions for 2nd-order ODEs.
 - You should still be able to derive the ODEs.
 - Understand qualitatively what's happening.

- Conclusion: These circuits are a b!tch to solve, especially with sinusoidal sources.
 - Next time we'll approach this problem from an entirely different perspective.