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EE 42/100: Lecture 8 

1st-Order RC Transient Example, 
Introduction to 2nd-Order Transients 
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Circuits with non-DC Sources 

 Recall that the solution to our ODEs is 
 
 Particular solution is constant for DC sources. 
 Allows us to plug in final condition found using 

DC steady-state. 
 
 But in general, the particular solution may 

not be constant! 
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RC Example: Sinusoidal Source 

 This circuit looks like another innocent RC 
circuit, but… the source is sinusoidal! 
 
 
 
 
 Governing ODE:  
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RC Example: Sinusoidal Source 

 Because the forcing function is now 
sinusoidal, so is the particular solution. 
 We now want a part. solution of the form 

 
 
 We will plug this solution back into the 

ODE to solve for the constants 
 No DC steady-state final condition! 
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RC Example: Sinusoidal Source 

 We plug           
   into the ODE: 
 
 
 
 The sine terms must sum to 5, while the 

cosine terms must sum to 0. 
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RC Example: Sinusoidal Source 

 We obtain a system of linear equations: 
 
 
 
 The solution is  

 
 Thus,  
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RC Example: Sinusoidal Source 

 Last step: homogeneous solution 
 
 
 Combine with the particular solution: 

 
 
 Finally, use initial condition to solve for K. 

7 



EE 42/100 Summer 2012, UC Berkeley T. Dear Lecture 8 

RC Example: Sinusoidal Source 

 Capacitor is initially uncharged: 
 
 
 We have finally completed the solution: 

 
 
 
 Notice frequency is unchanged! 
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RC Example: Sinusoidal Source 

 Take a look at the voltage waveform: 
 
 
 
 
 As before, an exponential natural 

response initially dominates; then it yields 
to the forced response as time passes 
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2ND-ORDER RLC CIRCUITS 
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2nd-Order Circuits 

 When we have more than 1 energy 
storage device, we get higher order ODEs. 
 
 Comp. solution becomes much more 

complicated than just exponential function. 
 
 Effects: Oscillation, ringing, damping 
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LC Tank 

 Suppose C has some initial 
charge 
 Close the switch at t = 0 
 What’s the behavior of i(t)? 

 
 Neither element dissipates 

energy! 
 We should not see anything 

like a decaying exponential. 
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LC Tank 

 KVL loop: 
 
 Differentiate and rearrange: 

 
 
 

   where                is the resonant frequency 
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LC Tank Solution 

 We want to solve 
 
 The complementary solution is 

 
 Initial conditions: 
 Inductor current cannot change instantly 
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LC Tank Solution 

 Can solve for the amplitude constant using 
1st derivative initial condition 
 More importantly, we see that the natural 

response is a sinusoidal function 
 Frequency determined by values of L and C 

 
 Current, voltage, and energy simply slosh 

back and forth between the two devices! 
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Series RLC Circuit 
RLC Circuit 

 
 
 
 
 

 Voltage 
 Current 
 Capacitance 
 Inductance 
 Resistance 

Spring-Mass-Damper 
 
 
 
 
 

 Force 
 Velocity 
 Spring 
 Mass 
 Damper 
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Series RLC Circuit 

 
 
 
 

 
 
 
 

 KVL loop: 
 

 Differentiate: 
 

 Divide by L:  
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General Form of ODE 

 RLC ODE: 
 
 All ODEs can be written as follows: 

 
 
 The particular solution / forced response 

depends on the form of forcing function 
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Homogeneous Equation 

 
 The complementary solution is much more 

complex now! 
 Depends on the following parameters: 

 
 Damping coefficient 
 Resonant frequency 
 Damping ratio 
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Damping Coefficient 

 
 Larger coefficient = more damping 
 Mechanical analogue: friction 

 
 Intuitively, resistance slows down current 

flow -> greater decay 
 But inductance tries to keep current going 
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Damping Ratio 

 
 The damping ratio tells us whether 

damping or oscillating dominates 
 We get THREE (3!) different comp. 

solutions depending on its value 
 
 Physically, does the current oscillate first, 

or does it just die out exponentially? 
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Overdamped Response 

 
 Damping dominates; resistance is too 

(damn) high, preventing oscillations. 
 Current decays at a rate determined by 
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Underdamped Response 

 
 Damping is still present, but not strong 

enough to prevent oscillation 
 Frequency of oscillation proportional to  
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Overshoot 

Ringing 
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Critically Damped Response 

 
 This response decays as fast as possible 

without causing any oscillations. 
 Important for systems that need to settle down 

quickly without overshooting. 
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Summary 

 Comparison of responses with different 
damping ratios 
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Source: Wikipedia, RLC Transient Plot.svg 

 Notice the tradeoff 
between initial 
overshoot and 
decay rate 
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Summary 
 We will not be quantitatively solving for the 

comp. solutions for 2nd-order ODEs. 
 You should still be able to derive the ODEs. 
 Understand qualitatively what’s happening. 

 
 Conclusion: These circuits are a b!tch to 

solve, especially with sinusoidal sources. 
 Next time we’ll approach this problem from an 

entirely different perspective. 
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