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Overview

e Modern deep reinforcement learning algorithms such as Proximal
Policy Optimization (PPO) rely on clipping and heuristics
[1] reminiscent of statistical estimation in an outlier-rich
(“heavy-tailed”) paradigm.

e Gradients of the PPO surrogate reward function and likelihood
ratios exhibit significant heavy-tailedness.

e Optimization heuristics significantly reduce heavy-tailedness,
while PPO loss clipping has mixed effects on heavy-tailedness.

e Replacing the empirical mean with Geometric Median-of-Means
(GMOM), a heavy-tailed estimator from robust statistics, leads to
higher performance in settings with and without heuristics.

Background

Policy Gradient Algorithms

e Trust region methods perform multiple steps of optimization of
a control policy my on a batch of data generated from m,4q by
importance sampling with a KL-divergence constraint to ensure
local estimate accuracy. We call the unconstrained algorithm Policy
Gradient Importance Sampling (PG-IS), with objective
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e Proximal Policy Optimization (PPO) clips the likelihood ratio p;, =
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— ) in the objective to discard samples that are too off-policy and
simulate a KL-divergence constraint between 7, and 7:
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¢ PPO relies on many optimization heuristics with little theoretical
motivation [1]. The PPO-Minimal (PPO-M) and PG-IS-Minimal
(PG-IS-M) variants do not use these optimizations.

Heavy-tailed Distributions

eDue to significant asymptotic probability mass, «-stable

distributions do not have all finite moments.

eThe lower the a-index, the more heavy-tailed the distribution.
Probability mass migrates inwards towards the center and
outwards into the tails.

e Variance is undefined for a < 2 and mean is undefined for a < 1.
e Gaussian distribution has a = 2 and Cauchy distribution has a = 1.

eThe a-index estimator [2] provides a heuristic estimate of
heavy-tailedness.
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Heavy-tailedness is endemic to PPO

a: PPO b: PPO-M c: PG-IS d: PG-IS-M
clipping, clipping, no clipping, no clipping,
heuristics no heuristics heuristics no heuristics

Fig. 1: Smoothed alpha-index of gradients averaged over seven MuJoCo environments as a
function of update steps on a single sampled batch of environment steps. Ten independent
updates weere sampled per environment per training stage.
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a: PPO b: PPO-M c: PG-IS d: PG-IS-M
clipping, clipping, no clipping, no clipping,
heuristics no heuristics heuristics no heuristics

Fig. 2: Smoothed alpha-index of MuJoCo likelihood ratio noises.

e Heavy-tailedness of gradients increases as current policy 7y differs
more from sampling policy 7yq.

e Heavy-tailedness increases as models progress through training, i.e.
later model iterates have heavier-tailed gradients.

e Heavy-tailedness of gradients is present even close to on-policy
optimization (near z = 0) but likelihood ratios are close to a@ = 2
and thus fairly Gaussian. Therefore, there is an additional source of
heavy-tailedness besides the likelihood ratios.

e Optimization heuristics significantly reduce heavy-tailedness of
gradients.

¢ PPO loss clipping does not significantly reduce heavy-tailedness
of gradients but does prevent increasing heavy-tailedness of
likelihood ratios.

Robust Gradient Estimation

GMOM ameliorates heavy-tailedness in supervised
learning settings as much as PPO-like loss clipping
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Robust Gradient Estimation (cont.)

With heuristics, GMOM outperforms sample
mean PPO in all but one MuJoCo environment

HalfCheetah-v2:PPOruns:10,GMOMRuns:5 Swimmer-v2:PPOruns:10,GMOMRuns:4 Walker2d-v2:PPOruns:10,GMOMRuns:5
5000

FRPO 120 : FPO ; PRO
GMOM-PPO GMOM-PPO GMOM-PPO

3000 100 AD00
80
3000
2000 .
B B 2
g g g
B g @ £ 2000
2
) 1000 w

1000

—20

-1000

200000 400000 GO0000 800000 1000000 0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
envTimeSteps envTimeSteps envTimeSteps

CartPole-v1:PPOruns:10,GMOMRuns:5 InvertedPendulum-v2:PPOruns:10,GMOMRuns:4 n Reacher-v2:PPOruns:10,GMOMRuns:4

500 ! 1000 i 20
fW«WW’W w
400 800 ’
o o | o
51 300 = | = 50
- -
200

100 | -140
I

PPO o ¥ ‘ PPO . ‘ PPO
GMOM-FPD GMOM-PPO GMOM-PPO

200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
envTimeSteps envTimeSteps envTimeSteps

Fig. 4: PPO versus GMOM+PPO smoothed learning curves on continuous control
environments. We found in general GMOM+PPO performs better than either PPO or GMOM.

In the heavier-tailed setting without heuristics,
GMOM outperforms sample mean PPO in a majority
of environments and comparably in all but two
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Fig. 5: PPO-M and GMOM-M are averaged over ten random seeds.

Future Work

eBy adaptively using different Geometric Median-of-Means
hyperparameters depending on the estimated heavy-tailedness
at the current training stage, we aim to prevent GMOM-M
performance falloff.

e We are exploring integrating Geometric Median-of-Means into
different optimization stages, such as applying the Adam optimizer
to per-block means rather than to individual gradient samples.
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