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Problem Statement

This thesis seeks to create a standard set of tasks for researchers to
use when evaluating their approaches to manipulating deformable
objects. This is part of the SoftGym project (Lin et al. 2020) to
benchmark reinforcement learning algorithms on deformable
objects. While some of the algorithms learned the tasks, there were
systematic difficulties when training the algorithms with the TD3
algorithm (Fujimoto et. al. 2018) when using the images observation
space.

Cloth Folding Water Pouring

Figure 2. The three tasks
used in this project.

These environments
were built using NVIDIA
FleX. The cloth is
represented by a grid of
particles.

The observation space is the representation of the environment the
agent receives. In one observation space, the agent receives an
array of the positions of objects. The TD3 algorithm was unable to
learn any of these tasks when using an RGB image-based
observation space.

Reward Function: Number of water particles in
the target cup.

Reward Function: Distance
between matching pairs of particles.

Reward Function: Surface area
covered by the cloth in the xz plane.

The TD3 reinforcement learning algorithm failed due to action
saturation. Action saturation is the result of an agent only performing
actions that are either the absolute maximum or minimum value. The

The following parameters were investigated in initial attempts to alleviate the
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Even though the action saturation was eliminated for the Water Pouring
task, the TD3 algorithm failed to learn the task. This means that there is
another issue affecting the ability of the TD3 algorithm to learn this task.
Additionally, the TD3 algorithm did not learn either of the cloth tasks.

modify the weight decay (A). This parameter is a penalty based on the
magnitude of the weight. This changes the update equation for weight W. in
the policy to include a new weight decay term:
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In addition to the higher dimensionality action spaces of the cloth tasks,
there is a longer, less likely series of actions that must be taken for the
agent to experience any reward from the cloth environment than in the
pouring water environment. The time that it takes to touch the cloth is likely
too long compared to the time it takes the pouring water environment to get

The addition of weight decay successfully eliminated action saturation from
the pouring water environment. However, it did not have this effect on
either of the cloth-related environments. These are very different
environments. Taking random actions in the water pouring environment is
more likely to result in the agent experiencing some reward than in the
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cloth environments, since the water pouring environment is always
iInteracting with the water, and also has a smaller dimensionality action
space. In contrast the cloth environments have to first maneuver the
grippers to the cloth before being able to interact with it.

any amount of water in the cup. This means that, by the time the cloth
environments receive any feedback from the environment, the policies
have already saturated, and cannot learn from the new information.



