
ABSTRACT:
Robot functionality in truly uncontrolled environments is 

thwarted by the debility of current autonomy software. 

Carnegie Mellon’s ice-finding lunar micro-rover will be 

humanity’s first real moonshot that compels ambitious 

autonomy from minimal computing and sensing in an 

unpredictable and highly uncontrolled environment.

MoonRanger design constraints, such as limited compute 

power and limited sensing, compel unprecedented 

autonomous functionality that will rely on algorithms for 

determining location, orientation, and maps of surrounding 

terrain. These elements of autonomy are keystones in 

MoonRanger’s overarching architecture, which, by 

necessity, encompasses both software and hardware 

considerations. This research details the foundations of a 

robust pose estimation under these limitations. The 

investigation evinces how preliminary algorithm application 

on experimental data is informing decisions as to the validity 

of design. The poster projects future research and speculates 

MoonRanger’s impact of shattering the boundaries of 

autonomous robotics.
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BACKGROUND AND CHALLENGES: 
As microrovers travel to distant goals, they go out of 

communication with their landers and earth. The critical 

requirement is to autonomously to return to the lander. 

Without excellent navigation, any rover would remain out of 

communication range and be lost forever. Given that the 

rover referenced in this research will search for ice at a lunar 

pole, the grazing sunlight presents truly black shadows (as 

pictured above) and many dark lighting conditions. As such, 

typical Visual-Inertial methodologies for Pose Estimation 

will fail. The need is for highly innovative solutions that 

combine data from non-visual sensors, sun sensors, and 

laser-lit image-processed terrain stripes. Additionally, there 

is a need for a vision-denied backup pose estimate that can 

guide such rovers home in the eventuality of camera 

electronic failure. Given the computational constraints of 

small microrovers and need for utilizing error-correcting 

code on the processor, other Autonomy Software 

components, such as mapping algorithms, must be 

streamlined and will rely heavily on a robust, efficient pose 

estimate. 
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IMPACT:

This work creates a complete, robust, and generalizable 

estimation procedure for robots to estimate their position in 

long treks on barren terrain. Computational constraints and 

perceptive challenges are alleviated by the usage of laser 

line striping and the continuing development of robust 

vision-denied pose estimation. The resource-limited 

exploration autonomy developed here will guide the first 

lunar microrover in search of polar ice, manifestation of 

this work in a world beyond.
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NEXT STEPS:
Current pose estimation, especially for a small rover, 

drifts excessively with long distance. In the case of 

MoonRanger, which must return after long treks, the 

rover would be lost. Future measures intended in this 

research are to:

(1) Investigate alternative formulations of covariance 

matrices of pure encoder-based pose estimates and sensor 

readings to yield the most robust pose estimate using the 

Extended Kalman Filter.

(2) Customize inclusion of sun sensor data such that sun 

orientation, an absolute bearing available whenever the 

sun is visible, is averaged into the pose estimate, with 

consideration for how the sun would move over the 

course of an autonomous trek.

(3) Define constants in proposed vision-based algorithm, 

implement, and refine.

(4) Optimize state storage such that parameters are stored 

to facilitate continuation of pose estimation even if the 

state-dependent program was restarted via a fault, fault 

recovery, or power conservation procedures. 

Pictured on the right is a comparison of Ground Truth rover pose 

(top) and a pose estimate using an Extended Kalman Filter (EKF) 

with both Inertial Measurement Unit (IMU) and encoders 

(bottom). The EKF integrates estimates from on-board encoders 

and IMU. The EKF used was ROS’s robot_pose_ekf package[5]. 

Sole reliance on the EKF with IMU and encoder values drifts 

significantly. The error in the example trek was roughly 5 percent 

of distance traveled. Proportionately, for a trek that is one 

kilometer out and a kilometer back, (MoonRanger’s ambition), 

the error would be roughly 100 meters. This is larger than the 

lander’s guaranteed communication range and would lead to loss 

of communication, hence loss of the rover.  For this reason, some 

form of visual odometry that succeeds in darkness is absolutely 

essential.
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LINE-STRIPING LOCALIZATION:
Conventional Visual-Inertial (VI) Algorithms fail at the lunar pole due 

to darkness. Alternately, laser line striping is evident in darkness as a 

form of structured light perception. An additional advantage of 

processing on laser line stripes is a drastic efficiency increase relative 

to conventional VI solutions by restricting the search space of points to 

match. The implementation and algorithm follow.

Implementation

Shine a laser at the ground so that it lights a line of terrain. Take a one 

picture with lasers on and one with lasers off. Difference the lit and 

unlit images (on a particular color channel) to accentuate the line. 

Image process to get crisp lines. Use geometry-based stereo to 

reconstruct points along the line [13]. Pictured at the top are transverse

red stripes. For the algorithm that follows, the configuration (right) 

Algorithm: 

(1) As the rover moves, update and store the point of rotation that corresponds geometrically 

and kinematically to the motion of the line stripes as a result of the rotational motion, as 

measured by the rover’s Inertial Measurement Unit.

(2) At the receipt of each new pair of laser line stripe point reconstructions, randomly select k

points along the new red line stripe, on the correct side of the point of rotation, and match to 

the old green laser line stripe, thickened by fitting a gaussian to each point. The matching point 

is the point with the closest height on the thickened green laser line stripe within a radius equal 

to α*(vr/tl). (Illustrated below, left)

(3) Repeat Step 2 for the green laser line stripe. (Illustrated below, right)

(4) Compute the rigid transform for each tuple of matched points.

(5) Return the rigid transform created by selecting the individual medians of changes roll, 

pitch, yaw, x, y, and z.

(Step 3) Map points on new green stripe to thickened old red 

stripe on the opposite, correct side of the point of rotation.

(Step 2) Map points on new red stripe to thickened old 

green stripe on the correct side of the point of rotation.

will project one green and one red parallel, diagonal stripe ahead of the rover. Distance between 

the stripes is equal to the vr/tl, where vr is rover velocity when driving straight forward and tl is 

the time between laser line stripe point reconstructions, on average. Two colors are used to 

eliminate the computational processing needed to determine which stripe is farther from the 

rover.
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