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ABSTRACT:

Robot functionality in truly uncontrolled environments is
thwarted by the debility of current autonomy software.
Carnegie Mellon’s ice-finding lunar micro-rover will be
humanity’s first real moonshot that compels ambitious
autonomy from minimal computing and sensing in an
unpredictable and highly uncontrolled environment.
MoonRanger design constraints, such as limited compute
power and limited sensing, compel unprecedented
autonomous functionality that will rely on algorithms for
determining location, orientation, and maps of surrounding
terrain. These elements of autonomy are keystones in
MoonRanger’s overarching architecture, which, by
necessity, encompasses both software and hardware
considerations. This research details the foundations of a
robust pose estimation under these limitations. The
Investigation evinces how preliminary algorithm application
on experimental data is informing decisions as to the validity
of design. The poster projects future research and speculates
MoonRanger’s impact of shattering the boundaries of
autonomous robotics.
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BACKGROUND AND CHALLENGES:

As microrovers travel to distant goals, they go out of
communication with their landers and earth. The critical
requirement is to autonomously to return to the lander.
Without excellent navigation, any rover would remain out of
communication range and be lost forever. Given that the
rover referenced in this research will search for ice at a lunar
pole, the grazing sunlight presents truly black shadows (as
pictured above) and many dark lighting conditions. As such,
typical Visual-Inertial methodologies for Pose Estimation
will fail. The need is for highly innovative solutions that
combine data from non-visual sensors, sun sensors, and
laser-lit image-processed terrain stripes. Additionally, there
IS a need for a vision-denied backup pose estimate that can
guide such rovers home in the eventuality of camera
electronic failure. Given the computational constraints of
small microrovers and need for utilizing error-correcting
code on the processor, other Autonomy Software
components, such as mapping algorithms, must be
streamlined and will rely heavily on a robust, efficient pose
estimate.

Ground Truth

EXPERIMENTAL EVALUATION OF VISION-
DENIED POSE ESTIMATION:

Pictured on the right is a comparison of Ground Truth rover pose
(top) and a pose estimate using an Extended Kalman Filter (EKF)
with both Inertial Measurement Unit (IMU) and encoders
(bottom). The EKF integrates estimates from on-board encoders
and IMU. The EKF used was ROS’s robot pose ekf package[5].
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Sole reliance on the EKF with IMU and encoder values drifts Estimate, Integrating Encoders and IMU

significantly. The error in the example trek was roughly 5 percent =
of distance traveled. Proportionately, for a trek that is one
kilometer out and a kilometer back, (MoonRanger’s ambition),
the error would be roughly 100 meters. This is larger than the
lander’s guaranteed communication range and would lead to loss
of communication, hence loss of the rover. For this reason, some
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form of visual odometry that succeeds in darkness is absolutely
essential.

LINE-STRIPING LOCALIZATION:

Conventional Visual-Inertial (V1) Algorithms fail at the lunar pole due
to darkness. Alternately, laser line striping iIs evident in darkness as a
form of structured light perception. An additional advantage of
processing on laser line stripes Is a drastic efficiency increase relative — FEsl
to conventional VI solutions by restricting the search space of points to SR
match. The implementation and algorithm follow.

Implementation

Shine a laser at the ground so that it lights a line of terrain. Take a one
picture with lasers on and one with lasers off. Difference the lit and
unlit images (on a particular color channel) to accentuate the line.
Image process to get crisp lines. Use geometry-based stereo to
reconstruct points along the line [13]. Pictured at the top are transverse

red stripes. For the algorithm that follows, the configuration (right)
will project one green and one red parallel, diagonal stripe ahead of the rover. Distance between

the stripes Is equal to the v,/t, where v, Is rover velocity when driving straight forward and t, Is
the time between laser line stripe point reconstructions, on average. Two colors are used to
eliminate the computational processing needed to determine which stripe is farther from the

rover.
Algorithm:

(1) As the rover moves, update and store the point of rotation that corresponds geometrically
and kinematically to the motion of the line stripes as a result of the rotational motion, as
measured by the rover’s Inertial Measurement Unit.

(2) At the receipt of each new pair of laser line stripe point reconstructions, randomly select k
points along the new red line stripe, on the correct side of the point of rotation, and match to
the old green laser line stripe, thickened by fitting a gaussian to each point. The matching point
IS the point with the closest height on the thickened green laser line stripe within a radius equal
to a*(v,/1)). (Illustrated below, left)

(3) Repeat Step 2 for the green laser line stripe. (lllustrated below, right)

(4) Compute the rigid transform for each tuple of matched points.

(5) Return the rigid transform created by selecting the individual medians of changes roll,

pitch, yaw, X, y, and z.

(Step 3) Map points on new green stripe to thickened old red
stripe on the opposite, correct side of the point of rotation.

(Step 2) Map points on new red stripe to thickened old
green stripe on the correct side of the point of rotation.

IMPACT:

This work creates a complete, robust, and generalizable
estimation procedure for robots to estimate their position in
long treks on barren terrain. Computational constraints and
perceptive challenges are alleviated by the usage of laser
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NEXT STEPS:

ar ice, manifestation of

Current pose estimation, especially for a small rover,
drifts excessively with long distance. In the case of

MoonRanger, which must return after long treks, the
rover would be lost. Future measures intended in this

research are to:

(1) Investigate alternative formulations of covariance

matrices of pure encoder-based

pose estimates and sensor

readings to yield the most robust pose estimate using the

Extended Kalman Filter.

(2) Customize inclusion of sun sensor data such that sun

orientation, an absolute bearing

avallable whenever the

sun Is visible, Is averaged into the pose estimate, with
consideration for how the sun would move over the

course of an autonomous trek.

(3) Define constants in proposed vision-based algorithm,

Implement, and refine.
(4) Optimize state storage such

that parameters are stored

to facilitate continuation of pose estimation even if the
state-dependent program was restarted via a fault, fault
recovery, or power conservation procedures.
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