
12/8/22

1

15-104 Introduction to Computing for Creative Practice
Fall 2022

37 Greatest Hits

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514

1

Basics
¬ Your p5.js programs consist of  two basic functions:

¬ function setup() { 

…

}

Runs first when your program launches to set up the canvas.

¬ function draw() {

…

}

Runs repeatedly, over and over, to draw on the canvas (unless you execute noLoop(); )

¬ If  you draw the same thing each time draw() runs, then it will look like a painting.
If  you draw something different each time, then it will look like an animation.

frameRate(r);
sets the number of  times
draw repeats to r times per second.

2

mailto:tcortina@cs.cmu.edu


12/8/22

2

The Canvas
¬ A canvas is made up of  pixels (picture elements).

¬ Screen resolution is expressed in pixels (e.g. 1920 X 1080)

¬ The origin (0, 0) of  the canvas is at the top left.
¬ x coordinates increase from left to right

¬ y coordinates increase from top to bottom

¬ Drawing is like painting…
¬ It's sequential. New paint goes on top of  old paint.

¬ The order you write the instructions is the order 
that your painting will be constructed.

3

Functions / Parameters vs. Arguments
¬ We’ve used functions that are predefined. (e.g. random, ellipse, etc.)
¬ We pass arguments to these functions (a function call).
¬ Each function assigns these arguments to a set of  parameters.
¬ When the function completes its computation, it can return a result.*
¬ Computation continues where we left off  after the function call. 
¬ When you call a function, you should supply 

the same number of  arguments as it has parameters.
¬ We can define our own functions that can be called from draw (or from each other).
¬ General format:

function name ( parameterlist ) {
function body

}

*In your own functions, you can return a value 
with return statement(s). Once a return
statement executes, flow of  control goes back to 
the calling function immediately.
General format:  return (expression );

4



12/8/22

3

Shapes & Fill
¬ ellipse(x, y, w, h);

¬ circle(x, y, d);

¬ rect(x, y, w, h);

¬ square(x, y, s);
¬ triangle(x1, y1, x2, y2, x3, y3);

¬ quad(x1, y1, x2, y2, x3, y3, x4, y4);

¬ fill(r, g, b, [alpha]);

¬ fill(grayvalue);

¬ fill(color);

¬ noFill();

r red (0 to 255, inclusive).
g green (0 to 255, inclusive).
b blue (0 to 255, inclusive).
alpha opacity (0 = transparent, 

to 255=fully opaque).

grayvalue black(0) to white (255)
color a p5.Color object

rectMode(CENTER); treats x,y as center
rather than top left for subsequent rectangles/squares.

5

Lines and Stroke
¬ line(x1, y1, x2, y2); 

¬ point(x, y);

¬ stroke(r, g, b, [alpha]);

¬ stroke(grayvalue);

¬ stroke(color);

¬ strokeWeight(weight);

¬ noStroke();

¬ dist(x1, y1, x2, y2)
returns the distance between (x1,y1) and (x2,y2)

r red (0 to 255, inclusive).
g green (0 to 255, inclusive).
b blue (0 to 255, inclusive).
alpha opacity (0 = transparent, 

to 255=fully opaque).

grayvalue black(0) to white (255)
color a p5.Color object

6



12/8/22

4

Variables
¬ A variable is a container that holds some data value.

¬ Global variables – defined before the setup function (i.e. not inside any specific function)

¬ Local variables – defined within a function

¬ We store a value in a variable using assignment (=).
¬ An assignment statement is of  the form: variable = expression ;
¬ Assignment overrides the previous value stored in the variable.

¬ p5.js has some variables that are predefined in the language to mean something:
mouseX, mouseY, width, height, mouseIsPressed

¬ Variables in p5.js have implicit data types. (e.g. Number, Boolean)

7

Using Arithmetic
¬ In general, at any place you can write a number, you can write an arithmetic 

expression or a function call that evaluates to a number.

¬ Order of  operations: 
* / % first (as they occur, left to right)
+ - next (as they occur, left to right)

¬ Parentheses can override order of  operations. (e.g.   (2 + 3) * 4 = 20  )

¬ Modulo operator:
x % y (for integers x > 0, y >0):   Divide x by y and keep the remainder.
Examples: 45 % 10 = 5 8 % 12 = 8

¬ Exponentiation:
Math.pow(a,b) returns ab

8



12/8/22

5

Mouse and key processing
mouseX - contains the current horizontal position of  the mouse, relative to (0, 0)

mouseY - contains the current vertical position of  the mouse, relative to (0, 0)

mouseIsPressed – Boolean that is true while the mouse button is pressed down

mousePressed() – function that is called when the mouse button is pressed down

mouseReleased() – function that is called when the mouse button is released

key – contains the current key pressed as a string

keyIsPressed – Boolean that is true while a key is pressed down

keyPressed() – function that is called when a key is pressed down

9

Conditionals (the if/else statement)
¬ An if statement allows to test a logical condition to determine whether to run some 

code or not.

¬ An if-else statement allows to test a logical condition to determine whether to run 
some code or some other code.

¬ Logical conditions are expressions that evaluate to true or false.

¬ General forms for if and if-else:

if ( condition ) { if ( condition ) {

instruction(s) if  true instruction(s) if  true

} } else {

instruction(s) if  false
}

10



12/8/22

6

Boolean expressions
¬ Expressions with the relational operators lead to true or false:

x < y less than
x > y greater than
x <= y less than or equal to
x >= y greater than or equal to
x == y equal to   (also ===)
x != y not equal to

¬ Expressions with logical operators lead to true or false:
a && b logical and (true if both a and b are true)
a || b logical or  (true if either a or b are true)
!a logical not (true if a is false, and vice-versa)

11

Boolean shortcuts
if (on == true) { ... if (on) { ...

if (on == false) { ... if (!on) { ...

if (on) { on = !on;

on = false;

} else {

on = true;

}

return (on == true); return (on);

12



12/8/22

7

Bounds & Mapping
¬ min(num1, num2)

¬ max(num1, num2)

¬ constrain(num, low, high)

¬ map(value, start1, stop1, start2, stop2)
¬ Re-maps a number from one range [start1,stop1] to another [start2, stop2].

¬ floor(x) – returns the greatest integer less than or equal to x

¬ round(x) – returns the nearest integer to x (a number with .5 rounds up)

13

Random values
random(x, y)
¬ Returns a random number between 
x (inclusive) and y (exclusive), uniformly.

random(y)
¬ Returns a random number between 

0 (inclusive) and y (exclusive), uniformly.

noise(xoff)
¬ Returns a random value between 0 and 1 

from a Perlin noise function at offset xoff.

randomGaussian(m, sd)
¬ Returns a random value so that, over time, 

the mean is m and the standard deviation is sd.

Perlin noise is a random sequence generator producing a 
more naturally ordered, harmonic succession of  numbers 
compared to the standard random() function.

14



12/8/22

8

Transformations
¬ In p5.js, you can perform a transformation on the canvas to create interesting effects.

¬ Types of  transformations:
¬ translate(x, y) – Translation  (shift horizontally and/or vertically)

¬ rotate(angle) – Rotation (rotate a certain angle around the origin)

¬ angle is in radians. Call radians(d) to convert degree value d to radians.

¬ scale(s) – Scaling (expand or contract) by factor s

¬ Transformations occur by moving the coordinate system of  the canvas, not the object itself.

¬ push() saves the current coordinate system and drawing properties.

¬ pop() returns you back to your previously saved coordinate system and drawing properties.

15

for Loop
for ( loop_initialization ; loop_condition ; loop_update ) {

code to repeat
}

Example: for (var i = 0 ; i < n ; i += 1) {
// loop body goes here

}

This is how programmers typically write a loop that runs n times where i is the loop counter. (n > 0)
The variable i cannot be used outside of  the loop since it is defined locally (within the loop structure).
Loops can be nested:

for (var row = 0; row < 5; row += 1) {
for (var col = 0; col < 4; col += 1) {

...
}

}

16



12/8/22

9

Polar Coordinates
¬ You can describe locations in terms of  angle and radius (polar coordinates).

¬ cos and sin functions tell you X and Y coordinates of  a point 
on a circle of  radius 1. The input parameter for cos and sin
is the angle (in radians): how far to rotate around the circle. 
The output is where you land in terms of  X (using cos) 
and Y (using sin).

translate(width/2, height/2); 
circle(0, 0, 2*r);
x = r * cos(radians(theta));
y = r * sin(radians(theta));
line(0, 0, x, y);

17

Arrays
¬ An array with n elements (n > 0) is an ordered collection of  values of  the same type, 

indexed from 0 to n-1. (ordered does not necessarily mean sorted here)

temps = [79, 81, 57, 64, 63, 57, 57]

¬ To access an array, we use “subscript” (index) notation:
average = sum / temps.length;
min = temps[0];
for (var j = 1; j < temps.length; j++) {

if (temps[j] < min) { min = temps[j]; }
}

¬ Methods: push(element) — appends element to an array (e.g. temps.push(73); )
pop() — deletes the last element, and returns it
shift() — returns the first element and shifts the rest down

18



12/8/22

10

Objects
¬ An object can be defined literally

var sqr = {x: 100, y: 100, w: 50, dx: 5, 
r: 255, g: 255, b:0}; 

¬ We can also create objects by construction within our program code.
var sqr = new Object();
sqr.x = 100; sqr.y = 100; sqr.w = 50; sqr.dx = 5;

sqr.r = 255; sqr.g = 255; sqr.b = 0;

¬ To access any properties of  the object, we use dot notation, listing the object 
variable name followed by a dot followed by the property (field) of  the object.
fill(sqr.r, sqr.g, sqr.b);

¬ An object variable points to (“references”) its own object.

sqr
x
y
w
dx
r
g
b

sqr2

sqr2 = sqr;
sqr2 is an alias.

19

Object Methods
function tulipDraw() {

... 
rect(this.x, this.y - this.height, 10, this.height);
var y = this.y - this.height;
ellipse(this.x + 5, y, 44, 44);
...

};
function tulipGrow(amount) {

this.height += amount;
};

function makeTulip(tx, ty, th) { // constructor
var tulip = {x: tx, y: ty, height: th,

show: tulipDraw, grow: tulipGrow};  // new object
return tulip; // return the new object

};

We use the reference this to indicate that we are writing a 
function and we are referencing a property of  this object while 
performing the function.

20



12/8/22

11

Using objects
var tulip;
function setup() {

createCanvas(400, 400);
tulip = makeTulip(38, 390, 150);

}

function draw() {
background(207, 250, 255);
tulip.show();
text("Press mouse to grow", 10, 20);

};

function mousePressed() {
tulip.grow(5);

}

38x
y

height
show

390
150

grow

tulip

function tulipDraw() {
…
}

function tulipGrow(amount) {
…
}

21

Uses of  arrays
Custom Shape
var x = [50, 61, 83, 69, 71, 50, 29, 31, 17, 39];
var y = [18, 37, 43, 60, 82, 73, 82, 60, 43, 37];
beginShape();
for (var i = 0; i < nPoints; i++) {

vertex(x[i], y[i]);
}
endShape(CLOSE);

Array of  Objects
var sqr_array = [];
sqr_array[0] = {x: 100, y: 100, w: 50, dx: 5, r: 255, g: 255, b:0};
sqr_array[1] = {x: 50, y: 50, w: 50, dx: 10, r: 0, g: 255, b:255};
fill(sqr_array[0].r, sqr_array[0].g, sqr_array[0].b);
square(sqr_array[0].x, sqr_array[0].y, sqr_array[0].w);

22



12/8/22

12

while Loop
while (condition ) {

loop body

}

function linear_search(arr, element, index) {
if (index < 0 || index >= arr.length) return -1;
var i = index;
while (i < arr.length) {

if (arr[i] == element) return i;
i++;

}
return -1;

}

23

Big O
¬ We say linear search is O(n) in the worst case. 

¬ All algorithms in this class do an amount of  work
linearly proportional to the number of  data values (n).

¬ If  an algorithm is O(n), then if  we double the number
of  inputs/elements, then we can expect twice as much work, approximately.

¬ If  an algorithm is O(n2) (a quadratic algorithm), then 
if  we double the number of  data values, we can expect 
4 = 22 times as much work.

¬ Comparing algorithms: When n is small, 
the algorithm you pick doesn’t really matter. 
But when n is large, it matters!

n

work

O(n)

24



12/8/22

13

Turtle Graphics API
¬ makeTurtle(x, y) -- make a turtle at x, y, facing right, pen down

¬ left(d) -- turn left by d degrees

¬ right(d) -- turn right by d degrees

¬ forward(p) -- move forward by p pixels

¬ back(p) -- move back by p pixels

¬ lowerPen() -- set pen down

¬ raisePen() -- pick pen up

¬ goto(x, y) -- go straight to this location

¬ setColor(color) -- set the drawing color

¬ setWeight(w) -- set line width to w

¬ face(d) -- turn to this absolute direction in degrees

¬ angleTo(x, y) -- what is the angle from my heading to location x, y?

¬ turnToward(x, y, d) -- turn by d degrees toward location x, y

¬ distanceTo(x, y) -- how far is it to location x, y?

An Application Programmer’s 
Interface (API) is a view of  the 
methods (functions) of  the object 
without seeing the details. The 
programmer can use the object just 
by knowing how to call the 
methods and what they return.

25

Sound
¬ Audio signals are essentially vibrations that travel through 

the air (and other materials) creating changes in pressure.

¬ The accuracy of  the digital audio sequence compared to the original analog audio 
signal increases with increased sampling rate, and increased bits per sample.
¬ e.g. CD audio: 44,100 Hz, 16 bits/sample (216 sound levels), 2-channel audio

¬ Multichannel sound interleaves samples in a sound data file.

¬ To capture a frequency of  X, you must 
sample the signal at a sample rate of  2X. (sampling theorem)

¬ A sound made up of  a set of  harmonic sinusoids at 
varying amplitudes and phases, summed together.

26



12/8/22

14

p5.Oscillator
¬ Creates a signal that oscillates between -1.0 and 1.0. 

¬ By default, the oscillation takes the form of  a sinusoidal shape ('sine'). 
¬ The frequency defaults to 440 oscillations per second (440Hz).

¬ start() Start an oscillator.

¬ stop() Stop an oscillator. 

¬ amp() Set the amplitude between 0 and 1.0. 

¬ freq() Set frequency of  an oscillator to a value. 

¬ setType() Set type to 'sine', 'square’, 'triangle’, or 'sawtooth' .

function soundSetup() { 
myTone = new p5.Oscillator();
myTone.setType('sine');
myTone.freq(880);
myTone.start();

}

function draw() {
myTone.amp(mouseX / width);
myTone.freq(200 + 1000*(mouseY / height));

}

Volume   Pitch

27

Drawing in 3D
• The origin in WEBGL is in the center of  the canvas by default.
• x increases left to right (as before)
• y increases top to bottom (as before)
• z increases toward us. (by default, the canvas is the z=0 plane)

createCanvas(400, 250, WEBGL);

• Camera views: perspective, orthographic
• 3D Shape Primitives (center is at origin): 

box(width, height, depth);
sphere(radius);
Use transformations to place shapes in scene.

• Lighting: ambient, directional, point
• Materials: basic, normal, ambient, specular

x

y

z

canvas

28



12/8/22

15

Code Style
¬ Comments help explain parts of  your code to the reader

fill (255, 255, 255);  // this is a comment (to the end of the line)

/* this is a comment

over several lines */

¬ Indentation shows code that is “inside” other code.
¬ Examples: the body of  a function, the body of  a loop, nested code.

¬ Typically a left bracket { increases indentation and a right bracket } decreases it.

¬ Functions compartmentalize the code into individually managed units which can 
be debugged/managed separately.
¬ Functions manage complexity of  your code by “hiding” finer details to help the programmer 

focus on the overall design task.

29


