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15-104 Introduction to Computing for Creative Practice
Fall 2022

37 Greatest Hits

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514
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Basics
¬ Your p5.js programs consist of  two basic functions:

¬ function setup() { 

…

}

Runs first when your program launches to set up the canvas.

¬ function draw() {

…

}

Runs repeatedly, over and over, to draw on the canvas (unless you execute noLoop(); )

¬ If  you draw the same thing each time draw() runs, then it will look like a painting.
If  you draw something different each time, then it will look like an animation.

frameRate(r);
sets the number of  times
draw repeats to r times per second.
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The Canvas
¬ A canvas is made up of  pixels (picture elements).

¬ Screen resolution is expressed in pixels (e.g. 1920 X 1080)

¬ The origin (0, 0) of  the canvas is at the top left.
¬ x coordinates increase from left to right

¬ y coordinates increase from top to bottom

¬ Drawing is like painting…
¬ It's sequential. New paint goes on top of  old paint.

¬ The order you write the instructions is the order 
that your painting will be constructed.
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Functions / Parameters vs. Arguments
¬ We’ve used functions that are predefined. (e.g. random, ellipse, etc.)
¬ We pass arguments to these functions (a function call).
¬ Each function assigns these arguments to a set of  parameters.
¬ When the function completes its computation, it can return a result.*
¬ Computation continues where we left off  after the function call. 
¬ When you call a function, you should supply 

the same number of  arguments as it has parameters.
¬ We can define our own functions that can be called from draw (or from each other).
¬ General format:

function name ( parameterlist ) {
function body

}

*In your own functions, you can return a value 
with return statement(s). Once a return
statement executes, flow of  control goes back to 
the calling function immediately.
General format:  return (expression );
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Shapes & Fill
¬ ellipse(x, y, w, h);

¬ circle(x, y, d);

¬ rect(x, y, w, h);

¬ square(x, y, s);
¬ triangle(x1, y1, x2, y2, x3, y3);

¬ quad(x1, y1, x2, y2, x3, y3, x4, y4);

¬ fill(r, g, b, [alpha]);

¬ fill(grayvalue);

¬ fill(color);

¬ noFill();

r red (0 to 255, inclusive).
g green (0 to 255, inclusive).
b blue (0 to 255, inclusive).
alpha opacity (0 = transparent, 

to 255=fully opaque).

grayvalue black(0) to white (255)
color a p5.Color object

rectMode(CENTER); treats x,y as center
rather than top left for subsequent rectangles/squares.
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Lines and Stroke
¬ line(x1, y1, x2, y2); 

¬ point(x, y);

¬ stroke(r, g, b, [alpha]);

¬ stroke(grayvalue);

¬ stroke(color);

¬ strokeWeight(weight);

¬ noStroke();

¬ dist(x1, y1, x2, y2)
returns the distance between (x1,y1) and (x2,y2)

r red (0 to 255, inclusive).
g green (0 to 255, inclusive).
b blue (0 to 255, inclusive).
alpha opacity (0 = transparent, 

to 255=fully opaque).

grayvalue black(0) to white (255)
color a p5.Color object
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Variables
¬ A variable is a container that holds some data value.

¬ Global variables – defined before the setup function (i.e. not inside any specific function)

¬ Local variables – defined within a function

¬ We store a value in a variable using assignment (=).
¬ An assignment statement is of  the form: variable = expression ;
¬ Assignment overrides the previous value stored in the variable.

¬ p5.js has some variables that are predefined in the language to mean something:
mouseX, mouseY, width, height, mouseIsPressed

¬ Variables in p5.js have implicit data types. (e.g. Number, Boolean)
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Using Arithmetic
¬ In general, at any place you can write a number, you can write an arithmetic 

expression or a function call that evaluates to a number.

¬ Order of  operations: 
* / % first (as they occur, left to right)
+ - next (as they occur, left to right)

¬ Parentheses can override order of  operations. (e.g.   (2 + 3) * 4 = 20  )

¬ Modulo operator:
x % y (for integers x > 0, y >0):   Divide x by y and keep the remainder.
Examples: 45 % 10 = 5 8 % 12 = 8

¬ Exponentiation:
Math.pow(a,b) returns ab
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Mouse and key processing
mouseX - contains the current horizontal position of  the mouse, relative to (0, 0)

mouseY - contains the current vertical position of  the mouse, relative to (0, 0)

mouseIsPressed – Boolean that is true while the mouse button is pressed down

mousePressed() – function that is called when the mouse button is pressed down

mouseReleased() – function that is called when the mouse button is released

key – contains the current key pressed as a string

keyIsPressed – Boolean that is true while a key is pressed down

keyPressed() – function that is called when a key is pressed down
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Conditionals (the if/else statement)
¬ An if statement allows to test a logical condition to determine whether to run some 

code or not.

¬ An if-else statement allows to test a logical condition to determine whether to run 
some code or some other code.

¬ Logical conditions are expressions that evaluate to true or false.

¬ General forms for if and if-else:

if ( condition ) { if ( condition ) {

instruction(s) if  true instruction(s) if  true

} } else {

instruction(s) if  false
}
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Boolean expressions
¬ Expressions with the relational operators lead to true or false:

x < y less than
x > y greater than
x <= y less than or equal to
x >= y greater than or equal to
x == y equal to   (also ===)
x != y not equal to

¬ Expressions with logical operators lead to true or false:
a && b logical and (true if both a and b are true)
a || b logical or  (true if either a or b are true)
!a logical not (true if a is false, and vice-versa)
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Boolean shortcuts
if (on == true) { ... if (on) { ...

if (on == false) { ... if (!on) { ...

if (on) { on = !on;

on = false;

} else {

on = true;

}

return (on == true); return (on);
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Bounds & Mapping
¬ min(num1, num2)

¬ max(num1, num2)

¬ constrain(num, low, high)

¬ map(value, start1, stop1, start2, stop2)
¬ Re-maps a number from one range [start1,stop1] to another [start2, stop2].

¬ floor(x) – returns the greatest integer less than or equal to x

¬ round(x) – returns the nearest integer to x (a number with .5 rounds up)
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Random values
random(x, y)
¬ Returns a random number between 
x (inclusive) and y (exclusive), uniformly.

random(y)
¬ Returns a random number between 

0 (inclusive) and y (exclusive), uniformly.

noise(xoff)
¬ Returns a random value between 0 and 1 

from a Perlin noise function at offset xoff.

randomGaussian(m, sd)
¬ Returns a random value so that, over time, 

the mean is m and the standard deviation is sd.

Perlin noise is a random sequence generator producing a 
more naturally ordered, harmonic succession of  numbers 
compared to the standard random() function.
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Transformations
¬ In p5.js, you can perform a transformation on the canvas to create interesting effects.

¬ Types of  transformations:
¬ translate(x, y) – Translation  (shift horizontally and/or vertically)

¬ rotate(angle) – Rotation (rotate a certain angle around the origin)

¬ angle is in radians. Call radians(d) to convert degree value d to radians.

¬ scale(s) – Scaling (expand or contract) by factor s

¬ Transformations occur by moving the coordinate system of  the canvas, not the object itself.

¬ push() saves the current coordinate system and drawing properties.

¬ pop() returns you back to your previously saved coordinate system and drawing properties.
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for Loop
for ( loop_initialization ; loop_condition ; loop_update ) {

code to repeat
}

Example: for (var i = 0 ; i < n ; i += 1) {
// loop body goes here

}

This is how programmers typically write a loop that runs n times where i is the loop counter. (n > 0)
The variable i cannot be used outside of  the loop since it is defined locally (within the loop structure).
Loops can be nested:

for (var row = 0; row < 5; row += 1) {
for (var col = 0; col < 4; col += 1) {

...
}

}
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Polar Coordinates
¬ You can describe locations in terms of  angle and radius (polar coordinates).

¬ cos and sin functions tell you X and Y coordinates of  a point 
on a circle of  radius 1. The input parameter for cos and sin
is the angle (in radians): how far to rotate around the circle. 
The output is where you land in terms of  X (using cos) 
and Y (using sin).

translate(width/2, height/2); 
circle(0, 0, 2*r);
x = r * cos(radians(theta));
y = r * sin(radians(theta));
line(0, 0, x, y);
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Arrays
¬ An array with n elements (n > 0) is an ordered collection of  values of  the same type, 

indexed from 0 to n-1. (ordered does not necessarily mean sorted here)

temps = [79, 81, 57, 64, 63, 57, 57]

¬ To access an array, we use “subscript” (index) notation:
average = sum / temps.length;
min = temps[0];
for (var j = 1; j < temps.length; j++) {

if (temps[j] < min) { min = temps[j]; }
}

¬ Methods: push(element) — appends element to an array (e.g. temps.push(73); )
pop() — deletes the last element, and returns it
shift() — returns the first element and shifts the rest down

18



12/8/22

10

Objects
¬ An object can be defined literally

var sqr = {x: 100, y: 100, w: 50, dx: 5, 
r: 255, g: 255, b:0}; 

¬ We can also create objects by construction within our program code.
var sqr = new Object();
sqr.x = 100; sqr.y = 100; sqr.w = 50; sqr.dx = 5;

sqr.r = 255; sqr.g = 255; sqr.b = 0;

¬ To access any properties of  the object, we use dot notation, listing the object 
variable name followed by a dot followed by the property (field) of  the object.
fill(sqr.r, sqr.g, sqr.b);

¬ An object variable points to (“references”) its own object.

sqr
x
y
w
dx
r
g
b

sqr2

sqr2 = sqr;
sqr2 is an alias.
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Object Methods
function tulipDraw() {

... 
rect(this.x, this.y - this.height, 10, this.height);
var y = this.y - this.height;
ellipse(this.x + 5, y, 44, 44);
...

};
function tulipGrow(amount) {

this.height += amount;
};

function makeTulip(tx, ty, th) { // constructor
var tulip = {x: tx, y: ty, height: th,

show: tulipDraw, grow: tulipGrow};  // new object
return tulip; // return the new object

};

We use the reference this to indicate that we are writing a 
function and we are referencing a property of  this object while 
performing the function.
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Using objects
var tulip;
function setup() {

createCanvas(400, 400);
tulip = makeTulip(38, 390, 150);

}

function draw() {
background(207, 250, 255);
tulip.show();
text("Press mouse to grow", 10, 20);

};

function mousePressed() {
tulip.grow(5);

}

38x
y

height
show

390
150

grow

tulip

function tulipDraw() {
…
}

function tulipGrow(amount) {
…
}
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Uses of  arrays
Custom Shape
var x = [50, 61, 83, 69, 71, 50, 29, 31, 17, 39];
var y = [18, 37, 43, 60, 82, 73, 82, 60, 43, 37];
beginShape();
for (var i = 0; i < nPoints; i++) {

vertex(x[i], y[i]);
}
endShape(CLOSE);

Array of  Objects
var sqr_array = [];
sqr_array[0] = {x: 100, y: 100, w: 50, dx: 5, r: 255, g: 255, b:0};
sqr_array[1] = {x: 50, y: 50, w: 50, dx: 10, r: 0, g: 255, b:255};
fill(sqr_array[0].r, sqr_array[0].g, sqr_array[0].b);
square(sqr_array[0].x, sqr_array[0].y, sqr_array[0].w);
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while Loop
while (condition ) {

loop body

}

function linear_search(arr, element, index) {
if (index < 0 || index >= arr.length) return -1;
var i = index;
while (i < arr.length) {

if (arr[i] == element) return i;
i++;

}
return -1;

}
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Big O
¬ We say linear search is O(n) in the worst case. 

¬ All algorithms in this class do an amount of  work
linearly proportional to the number of  data values (n).

¬ If  an algorithm is O(n), then if  we double the number
of  inputs/elements, then we can expect twice as much work, approximately.

¬ If  an algorithm is O(n2) (a quadratic algorithm), then 
if  we double the number of  data values, we can expect 
4 = 22 times as much work.

¬ Comparing algorithms: When n is small, 
the algorithm you pick doesn’t really matter. 
But when n is large, it matters!

n

work

O(n)
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Turtle Graphics API
¬ makeTurtle(x, y) -- make a turtle at x, y, facing right, pen down

¬ left(d) -- turn left by d degrees

¬ right(d) -- turn right by d degrees

¬ forward(p) -- move forward by p pixels

¬ back(p) -- move back by p pixels

¬ lowerPen() -- set pen down

¬ raisePen() -- pick pen up

¬ goto(x, y) -- go straight to this location

¬ setColor(color) -- set the drawing color

¬ setWeight(w) -- set line width to w

¬ face(d) -- turn to this absolute direction in degrees

¬ angleTo(x, y) -- what is the angle from my heading to location x, y?

¬ turnToward(x, y, d) -- turn by d degrees toward location x, y

¬ distanceTo(x, y) -- how far is it to location x, y?

An Application Programmer’s 
Interface (API) is a view of  the 
methods (functions) of  the object 
without seeing the details. The 
programmer can use the object just 
by knowing how to call the 
methods and what they return.
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Sound
¬ Audio signals are essentially vibrations that travel through 

the air (and other materials) creating changes in pressure.

¬ The accuracy of  the digital audio sequence compared to the original analog audio 
signal increases with increased sampling rate, and increased bits per sample.
¬ e.g. CD audio: 44,100 Hz, 16 bits/sample (216 sound levels), 2-channel audio

¬ Multichannel sound interleaves samples in a sound data file.

¬ To capture a frequency of  X, you must 
sample the signal at a sample rate of  2X. (sampling theorem)

¬ A sound made up of  a set of  harmonic sinusoids at 
varying amplitudes and phases, summed together.
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p5.Oscillator
¬ Creates a signal that oscillates between -1.0 and 1.0. 

¬ By default, the oscillation takes the form of  a sinusoidal shape ('sine'). 
¬ The frequency defaults to 440 oscillations per second (440Hz).

¬ start() Start an oscillator.

¬ stop() Stop an oscillator. 

¬ amp() Set the amplitude between 0 and 1.0. 

¬ freq() Set frequency of  an oscillator to a value. 

¬ setType() Set type to 'sine', 'square’, 'triangle’, or 'sawtooth' .

function soundSetup() { 
myTone = new p5.Oscillator();
myTone.setType('sine');
myTone.freq(880);
myTone.start();

}

function draw() {
myTone.amp(mouseX / width);
myTone.freq(200 + 1000*(mouseY / height));

}

Volume   Pitch
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Drawing in 3D
• The origin in WEBGL is in the center of  the canvas by default.
• x increases left to right (as before)
• y increases top to bottom (as before)
• z increases toward us. (by default, the canvas is the z=0 plane)

createCanvas(400, 250, WEBGL);

• Camera views: perspective, orthographic
• 3D Shape Primitives (center is at origin): 

box(width, height, depth);
sphere(radius);
Use transformations to place shapes in scene.

• Lighting: ambient, directional, point
• Materials: basic, normal, ambient, specular

x

y

z

canvas
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Code Style
¬ Comments help explain parts of  your code to the reader

fill (255, 255, 255);  // this is a comment (to the end of the line)

/* this is a comment

over several lines */

¬ Indentation shows code that is “inside” other code.
¬ Examples: the body of  a function, the body of  a loop, nested code.

¬ Typically a left bracket { increases indentation and a right bracket } decreases it.

¬ Functions compartmentalize the code into individually managed units which can 
be debugged/managed separately.
¬ Functions manage complexity of  your code by “hiding” finer details to help the programmer 

focus on the overall design task.
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