

1

The Universe Consists of Springs

Nearly every solid material can be thought of as a series of particles which are attached to each other by elastic forces.

From Isaac Newton (1686) we know his second law of motion, that $F=m a$. This states that in general, force is proportional to mass times acceleration.

- From Robert Hooke (1678) we know the spring law, $\boldsymbol{F}=-k x$. This states that the force applied by a spring, is proportional (by some constant \boldsymbol{k}) to its distention \boldsymbol{x} (amount of stretch or compression). The minus sign tells us that the spring's "restorative force" happens in the opposite direction.

3

Damped Harmonic Motion

Because $F=\boldsymbol{m a}$ and $F=-k x$, we can derive that $\boldsymbol{m a}=-k \boldsymbol{x}$.

- Interestingly, this is actually a "second-order differential equation" - which describes a relationship between a particle's position, \boldsymbol{x}, and its acceleration (or the rate of change of the rate of change of its position), a.
- The solution to such equations always
take the form of an "exponentially damped cosinusoid", in what is called damped harmonic motion:

5

Particle

```
// make a new particle (constructor)
function makeParticle(x, y, dx, dy) {
    var p = {px: x, py: y, vx: dx, vy: dy,
        mass: 1.0, damping: 0.96,
        bFixed: false,
        bLimitVelocities: false,
        bPeriodicBoundaries: false,
        bHardBoundaries: false,
        addForce: particleAddForce,
        update: particleUpdate,
        limitVelocities: particleLimitVelocities,
        handleBoundaries: particleHandleBoundaries,
        draw: particleDraw
        }
    return p;
```


7

Setting things up

var myParticles = [];
var mySprings = [];
function createParticles()\{
var particle0 = makeParticle(250, 200, 0, 0);
var particle1 = makeParticle(350, 200, 0, 0);
myParticles.push(particle0);
myParticles.push(particle1);
function createSpringMeshConnectingParticles() \{
var $K=0.1 ; ~ / / ~ t h e ~ s p r i n g ~ c o n s t a n t ~$
var $p=$ myParticles[0];
var $q=$ myParticles[1];
var aSpring $=$ makeSpring(p, q, K);
mySprings.push(aSpring);

9

Truss (Triangle of springs)

11

function createParticles()\{
var particle0 = makeParticle(250, 200, 0, 0);
var particle1 = makeParticle(350, 200, 0, 0);
particle1.bFixed = true;
myParticles.push(particle0);
myParticles.push(particle1);
function particleUpdate() \{
if (this.bFixed $==$ false) \{
this.vx *= this.damping;
this.vy *= this.damping;
\}

If the bfixed property is true,
Then when this particle is
updated, its particleUpdate function does nothing!

13

Rope (Array of Springs)

function createSpringMeshConnectingParticles() \{
// Stitch the particles together into a mesh by
// connecting neighbors with a spring.
var $\mathrm{K}=0.1$; // the spring constant
for (var $i=0$; $i<n P o i n t s-1 ; i++$) \{
var p = myParticles[i];
var q = myParticles[i + 1];
var aSpring = makeSpring(p, q, K);
mySprings.push(aSpring);
\}

15

16

