
10/6/22

1

15-104 Introduction to Computing for Creative Practice
Fall 2022

16 Objects

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514

1

Variables
¬ In Javascript, we have seen that we can store a single data value in a variable.

var x = 15104;
var winner = true;
var boxColor = “purple”;

¬ We can also reference an array from a variable.
var temps = [79, 81, 57, 64, 63, 57, 58]

¬ But we also saw multiple variables holding data for the same object we were
drawing on the canvas (e.g. drawing one box on the canvas):
var x, y, dx, dy, c;

¬ Although they’re individual variables, they’re all connected to the same shape.

2

mailto:tcortina@cs.cmu.edu

10/6/22

2

Objects
¬ In Javascript, an object can be defined using a variable. However, the object has

properties and behaviors associated with the object.

¬ An object can be defined literally
var sqr = {x: 100, y: 100, w: 50, dx: 5,

r: 255, g: 255, b:0};

¬ To access any properties of the object, we use dot notation, listing the object
variable name followed by a dot followed by the property (field) of the object.
fill(sqr.r, sqr.g, sqr.b);
rect(sqr.x, sqr.y, sqr.w, sqr.w);
sqr.x += sqr.dx;
if (sqr.x > width) { sqr.x = -sqr.w };

3

A square object
var sqr = {x: 100, y: 100, w: 50, dx: 5, r: 255, g: 255, b:0};

function setup() {
createCanvas(200, 200);
background(220);
frameRate(30);

}

function draw() {
fill(sqr.r, sqr.g, sqr.b);
rect(sqr.x, sqr.y, sqr.w, sqr.w);
sqr.x += sqr.dx;
if (sqr.x > width) { sqr.x = -sqr.w; }

}

4

10/6/22

3

Objects
¬ To access any properties of the object, you can also treat the object variable like

an array and use the field name, in quotes, as the index:

fill(sqr[“r”], sqr[“g”], sqr[“b”]);
rect(sqr[“x”], sqr[“y”], sqr[“w”], sqr[“w”]);
sqr[“x”] += sqr[“dx”];
if (sqr[“x”] > width) { sqr[“x”] = -sqr[“w”]; }

¬ We will prefer the dot notation since this is common across languages.

5

Objects
¬ We can also create objects by construction within our program code.

var sqr;
function setup() {

createCanvas(200, 200);
background(220);
frameRate(5);
sqr = new Object();
sqr.x = 100; sqr.y = 100; sqr.w = 50; sqr.dx = 5;
sqr.r = 255; sqr.g = 255; sqr.b = 0;

}

6

10/6/22

4

Objects and Equality
¬ Consider the following Javascript code:

var sqr1;
var sqr2;
function setup() {

sqr1 = {x: 100, y: 100, w: 50, dx: 5,
r: 255, g: 255, b:0};

sqr2 = new Object();
sqr2.x = 100; sqr2.y = 100; sqr2.w = 50; sqr2.dx = 5;
sqr2.r = 255; sqr2.g = 255; sqr2.b = 0;
print(sqr1 == sqr2);

}

¬ Although both objects are exactly the same, this prints false. Why?

7

Objects and Equality
¬ Each variable points to (“references”) its own object.

¬ This reference is typically a memory address where the object is stored.

¬ The operator == is testing the contents of the variables sqr1 and sqr2 which are
memory addresses.
¬ Remember, these object variables do not hold the objects themselves.

They reference (or point to) the objects somewhere in memory.

sqr1 sqr2
x
y
w
dx
r
g
b

x
y
w
dx
r
g
b

8

10/6/22

5

Objects and Equality
¬ Consider the following Javascript code:

var sqr1;
var sqr2;
function setup() {

sqr1 = {x: 100, y: 100, w: 50, dx: 5,
r: 255, g: 255, b:0};

sqr2 = sqr1;
print(sqr1 == sqr2);

}

¬ Now, this code prints true. Why?

9

Objects and Equality
¬ Using the reference principle, when we assign sqr2 with the value stored in sqr1,

str1 contains the location of the object (not the object itself).

¬ So sqr2 gets a copy of the location of the object.

¬ Now sqr1 and sqr2 are both referencing (pointing to) the same object.

¬ This reference is typically a memory address where the object is stored.

sqr1

sqr2

x
y
w
dx
r
g
b

10

10/6/22

6

Aliasing
¬ In the previous example, sqr2 is an alias of sqr1.

¬ They both essentially point to the same thing.

¬ If we change the object through one alias, we will see that change through the
other alias.

sqr1 = {x: 100, y: 100, w: 50, dx: 5,
r: 255, g: 255, b:0};

sqr2 = sqr1;
sqr2.w = 75;
print(sqr1.w); // prints 75

11

Objects and Function Calls
¬ Whenever you call a function with a parameter, a copy of the argument is passed to

the function and stored in the parameter.

¬ The same happens with objects, so when you call a function and pass an object,
you’re really passing a reference to it which is stored in the parameter.

¬ So the parameter acts like an alias of the original object variable.

function draw_sqr(sq) {
fill(sq.r, sq.g, sq.b); ...

}

draw_sqr(sqr2);

sqr2

sq

x
y
w
dx
r
g
b

12

10/6/22

7

Two square objects
var sqr1 = {x: 100, y: 100, w: 50, dx: 5, r: 255, g: 255, b:0};
var sqr2 = {x: 50, y: 50, w: 50, dx: 10, r: 0, g: 255, b:255};

function setup() {
createCanvas(200, 200);
background(220);
frameRate(5);

}

function draw() {
draw_sqr(sqr1);
draw_sqr(sqr2);

}

function draw_sqr(sq) {
fill(sq.r, sq.g, sq.b);
rect(sq.x, sq.y, sq.w, sq.w);
sq.x += sq.dx;
if (sq.x > width) { sq.x = -sq.w; }

}

sq is an alias,
first for sqr1,
then for sqr2

13

Arrays of Objects
¬ You can even have an array of objects!
var sqr_array = [];

function setup() {
sqr_array[0] = {x: 100, y: 100, w: 50, dx: 5,

r: 255, g: 255, b:0};
sqr_array[1] = {x: 50, y: 50, w: 50, dx: 10,

r: 0, g: 255, b:255};
...

}
function draw() {

fill(sqr_array[0].r, sqr_array[0].g, sqr_array[0].b);
square(sqr_array[0].x, sqr_array[0].y, sqr_array[0].w);
...

14

10/6/22

8

Many Boxes (again)
var bx = []; // array of boxes

function setup() {
createCanvas(200, 200);
for (i = 0; i < 100; i++) {

bx[i] = new Object();
bx[i].x = random(width);
bx[i].y = random(height);
bx[i].dx = random(-5, 5);
bx[i].dy = random(-5, 5);
bx[i].c = color(random(255), random(255), random(255));

}
frameRate(5);

}

15

Many Boxes (again)
function draw_box(b) {

fill(b.c);
rect(b.x, b.y, 10, 10);

}

function update_box(b) {
b.x += b.dx;
b.y += b.dy;
if (b.x > width) b.x = 0;
else if (b.x < 0) b.x = width;
if (b.y > height) b.y = 0;
else if (b.y < 0) b.y = height;

}

These functions run some generic
box object b. (b is an alias.)
Note there is no subscript since this
should work for any of the box
objects.

16

10/6/22

9

Many Boxes (again)
function draw() {

background(200, 200, 200);
noStroke();
for (i = 0; i < 100; i++) {

draw_box(bx[i]);
update_box(bx[i]);

}
}

For each of the 100 box objects,
send the ith box object to the two
helper functions to draw and update
each box.

17

Try This
¬ Modify the horizontally moving box program so that the box

reappears at some new random vertical position when it
reappears on the left side.

¬ Modify the many boxes programs so that all of the boxes get
new random colors when the mouse is clicked.

18

