
8/31/22

1

15-104 Introduction to Computing for Creative Practice
Fall 2022

02 Basics of p5.js Programming (cont’d)

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514

1

RGB
¬ The RGB color model is additive in the sense that the

three light beams are added together, and their light
spectra add, wavelength for wavelength, to make the
final color's spectrum. (Wikipedia)

¬ https://www.rapidtables.com/web/color/RGB_Color.html

2

mailto:tcortina@cs.cmu.edu
https://www.rapidtables.com/web/color/RGB_Color.html

8/31/22

2

Color!
¬ Pixels can have color (of course). A popular model for programming is the

RGB model, where each pixel is made up of a mixture of red, green and blue.
(we will use others later)

¬ fill(r, g, b, [alpha]);
stroke(r, g, b, [alpha]);
Parameters:

r Number: Amount of red (0 to 255, inclusive).

g Number: Amount of green (0 to 255, inclusive).

b Number: Amount of blue (0 to 255, inclusive).

alpha Number: Opacity (0 = transparent, to 255=fully opaque).

3

Drawing is like painting…
¬ It's sequential. New paint goes on top of old paint.

¬ The order you write the instructions is the order that your painting will be constructed.

function draw() {
background(200);
fill(255, 0, 0); // red
rect(100, 100, 50, 50);
fill(0, 255, 0); // green
circle(100, 100, 40);
fill(255, 165, 0); // orange
triangle(30, 50, 25, 125, 175, 150);

}

Comment for ourselves

4

8/31/22

3

Drawing is like painting…
¬ Same set of commands, why does this painting look different?

function draw() {
background(200);
fill(0, 255, 0); // green
circle(100, 100, 40);
fill(255, 165, 0); // orange
triangle(30, 50, 25, 125, 175, 150);
fill(255, 0, 0); // red
rect(100, 100, 50, 50);

}

5

What’s going on?
function draw() {
background(200);
fill(0, 255, 0); // green
circle(100, 100, 40);
fill(255, 165, 0); // orange
triangle(30, 50, 25, 125, 175, 150);
stroke(0, 255, 255); // cyan
strokeWeight(3);
fill(255, 0, 0); // red
rect(100, 100, 50, 50);

}

In this example, we want to draw only the red rectangle with a
cyan border, but all the shapes get a cyan border! Why?

6

8/31/22

4

The draw function loops!
¬ Remember that the draw function automatically loops/repeats itself.

¬ So once we change the stroke color and weight, that color and weight remain in
effect for the next repetition of draw.

¬ If you are drawing a painting (static image) and
don’t want the draw function to repeat itself, you
can call the noLoop() function at the end of
the draw function so it doesn’t loop back on itself.

7

noLoop()
function draw() {
background(200);
fill(0, 255, 0); // green
circle(100, 100, 40);
fill(255, 165, 0); // orange
triangle(30, 50, 25, 125, 175, 150);
stroke(0, 255, 255); // cyan
strokeWeight(3);
fill(255, 0, 0); // red
rect(100, 100, 50, 50);
noLoop();

}

That’s better!

8

8/31/22

5

Mouse input (introduction)
mouseX
mouseY

¬ The system variable mouseX always contains the current horizontal position
of the mouse, relative to (0, 0) of the canvas.

¬ The system variable mouseY always contains the current vertical position of
the mouse, relative to (0, 0) of the canvas.

function draw() {
background(0);
fill(0, 230, 130);
ellipse(mouseX, mouseY, 140, 95);

}

9

Random values (introduction)
random(x, y)
¬ Returns a random floating-point between x (inclusive) and y

(exclusive).
function draw() {

background(200);

fill(250, 250, 0);

ellipse(random(0, 300), random(0, 300), random(10, 140), random(9, 120));

ellipse(random(0, 300), random(0, 300), random(10, 140), random(9, 120));

ellipse(random(0, 300), random(0, 300), random(10, 140), random(9, 120));

noLoop();

}

10

8/31/22

6

Code Style: Comments
¬ Comments help explain parts of your code to the reader
fill (255, 255, 255); // this is a comment (to the end of the line)

// this is a comment too

/* this is also a comment between the slash-star and star-slash */

/* this is a comment

over several lines */

¬ Comments help us understand our code months from now
when we go back to it to update it or use part of it for another program.

11

Code Style: Indentation
¬ Shows code that is “inside” other code.
¬ Example: the body of a function is inside its function declaration:

function draw() {

background(200);

ellipse(50, 50, 80, 80);

}

¬ Typically, a left bracket { increases indentation and a right bracket }
decreases it.

¬ Use 4 spaces. Never use tabs.
¬ See the website if you use Sublime to make sure tabs translate to 4 spaces.

12

8/31/22

7

No!
¬ This will still work, but you will make us sad, or mad.

function draw() {
background(200);
fill(0, 255, 0);
circle(100, 100, 40);
fill(255, 165, 0);
triangle(30, 50, 25, 125, 175, 150);
fill(255, 0, 0);
rect(100, 100, 50, 50);
}

13

Console
¬ Look for the Javascript console in your browser.
¬ This will help you find errors in your code.
Example: Ellipse(mouseX, mouseY, 140, 95);

Console message:
Uncaught ReferenceError: Ellipse is not defined

at draw (sketch.js:10)

...

The error indicates that it can’t recognize Ellipse (should be
ellipse) in the draw function in sketch.js at line number 10.

Google Chrome
View
> Developer
>> Javascript Console

14

8/31/22

8

Using Arithmetic
¬ In general, at any place you can write a number, you can write an

arithmetic expression or a function call that evaluates to a number.
¬ Example:
ellipse(100, 100, 50, 75);

ellipse(mouseX / 2, mouseY / 2, 50, 75);

ellipse(100, 100, random(30, 70), random(40, 60));

15

Example
function setup() {

createCanvas(300, 300);
}

function draw() {
background(200, 200, 150);
fill(180, 180, 255);
ellipse((width / 2), (height / 2), 60, 60);
ellipse((width / 2) + 10, (height / 2) + 10, 60, 60);
ellipse((width / 2) + 20, (height / 2) + 20, 60, 60);

} width is a p5.js environment variable that represents the width of the canvas in pixels.
height is a p5.js environment variable that represents the height of the canvas in pixels.
Why are these identifiers useful?

16

8/31/22

9

Conditionals (the if statement)
¬ An if statement allows to test a logical condition to determine

whether to run some code or not.
¬ Logical conditions are expressions that evaluate to true or false.
¬ Expressions with the relational operators lead to true or false:
< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

17

Example
function setup() {

createCanvas(300, 300);
}

function draw() {
background(230, 230, 0);
if (mouseX < (width / 2)) {

background(0, 0, 200);
}

}

Note the parentheses around the
logical condition:
if (condition) {

// body of if statement
}

Note the instruction(s) that are to be
executed only if the condition is true
are inside the brackets and indented.

18

8/31/22

10

Conditionals (the if/else statement)
¬ An if-else statement allows to test a logical condition to

determine whether to run some code or some other code.
¬ General forms for if and if-else:

if (condition) { if (condition) {

instruction(s) if true instruction(s) if true

} } else {

instruction(s) if false
}

19

Example (McCarthy, Reas, Fry)

function setup() {
createCanvas(600, 400);
strokeWeight(30);

}

function draw() {
background(240);
stroke(102);
line(140, 0, 170, height);
if (mouseIsPressed) {

stroke(0);
} else {

stroke(255);
}
line(0, 170, width, 150);

}

mouseIsPressed is a p5.js system
variable that evaluates to true if the mouse
is pressed down and false otherwise.

20

8/31/22

11

Example (layered ifs)
function setup() {

createCanvas(600, 400);
}
function draw() {

if (mouseX < (width * 0.33)) {

background(255, 0, 0);

} else if (mouseX > (width * 0.66)) {

background(0, 255, 0);

} else {

background(0, 0, 255);

}

}

21

Try these:
¬ Put a 20 X 20 square in each corner of a canvas (assuming the canvas

is at least 40 X 40).
¬ Make a circle appear if the mouse is below the middle of your

canvas.
¬ Modify the code so the circle follows the mouse if the mouse is below

the middle of the canvas, but nothing appears otherwise.
¬ Make the background of the canvas turn red if the mouse is in the

top left quadrant, green if the mouse is in the bottom left quadrant,
blue if the mouse is in the top right quadrant, and black if the
mouse is in the bottom right quadrant. (HINT: You can do this by
layering if-else instructions.)

22

