11/30/20

15-104 Introduction to Computing for Creative Practice
Fall 2020

32-Recursion

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514

Function Calls

When a function calls another, that called function runs to
completion and then returns back to where the call was made, and
the program continues from there.

This can happen in a nested fashion. A function can call another
function, which calls yet another function, etc. When a function
returns, it returns to where it was called.

Example: A calls B. B calls C. C calls D.

When D completes/returns, which function resumes?

Which function resumes when that function completes?

The computer keeps track of the functions on a system stack.

> W0

mailto:tcortina@cs.cmu.edu

11/30/20

Recursion

A function can call itself! Such a function is recursive.

The computer still keeps track of where we return, even though
the functions all have the same name.

Example: Factorial

51=5%4*3*27*1

But we can also say that

51=5%*4l

In general, n! = n™* (n-1)!

But this could go on forever, when do we stop?

When n = 0, 0! = 1 by definition.

Recursion

A function can call itself! Such a function is recursive.

The computer still keeps track of where we return, even though
the functions all have the same name.

Example: Factorial

S5l=5*4*3*2*1

But we can also say that

51=5%*4!

In general, n! =n * (n-1)!

But this could go on forever, when do we stop?

When n = 0, 0! = 1 by definition.

11/30/20

Factorial

var n = 0;
function setup() {

createCanvas (400, 400); frameRate(1l);

-~

function draw() {
background(220);
var numCircles = factorial(
drawCircles(numCircles);

n += 1;
}
function factorial(n) {
if (n == 0) return 1;
return n * factorial(n-1);
}

n);

// NOT SHOWN

// base case
// recursive case

Factorial: Trace

factorial(5) = 5 * factori
factorial(4) = 4 * fac
factorial(3) = 3 *
factorial(2) =

factorial(

factor

factorial(

factorial(2) =
factorial(3) = 3 *
factorial(4) = 4 * 6 =
factorial(5) = 5 * 24 = 12

al(4)

torial(3)
factorial(2)

2 * factorial(1l)

1) = 1 * factorial(0)

ial(0) =1

1) =1+ 1=1
2 1 =2

2 =6

24

0

11/30/20

Recursive Squares

You know how to create this sketch iteratively (i.e. with a loop).
How would you create this sketch recursively?

Express the problem so its solution requires
a simpler version of itself.

Drawing all squares starting with size s:

* Draw a square of size s and then draw all
of the squares starting with size s-50.

* If the starting size is 0, then you're done.

Recursive Squares

function setup() {
createCanvas (400, 400); rectMode(CENTER);

function draw() {

background(220);
drawSquare(350); // initial call
noLoop();
}
function drawSquare(size) {
if (size == 0) return; // base case (non-recursive)

fill(color(random(0,256), random(0,256), random(0, 256)));
square (200, 200, size);

drawSquare(size-50); // recursive call

return;

return by itself just exits the function without returning a calculated answer.

11/30/20

igss
Xy
igss
g

Recursive Squares: Trace

drawSquare(350)
square (200, 200, 350)
drawSquare(300)
square (200, 200, 300)
drawSquare(250)
square(200, 200, 250)
drawSquare(200)
square (200, 200, 200)
drawSquare(150)
square (200, 200, 150)
drawSquare(100)
square (200, 200, 100)
drawSquare(50)
square (200, 200, 50)
drawSquare(0)

Each recursive function
(except the first call)
returns back to the same
function where it was
called but the only thing
left to do is also return.

Fractal (self-similar image)

How do we create something like this?

Break the problem down to drawing each of the
five sections. For each of the five sections, break
them down into five sections. Keep doing this
until each section is of size 3 and then draw it.

Ma e

10

11/30/20

28 AN 4 (xy)

|’i’i’! Fractal H

’ ’ ’ ’ function draw() ({ e
background(240); £i11(0);
recPattern(80, 80, 243);

‘ ’ ’ ’ %unction recPattern(x, y, size) e

prs ¢

if (size <= 3) rect(x, y, size, size); // base case
} else { // recursive case:

var third = size / 3;

‘ ’ ’ ’ recPattern(x, y, third); // upper left
recPattern(x + 2 * third, y, third); // upper right

’ ’ ’ recPattern(x + third, y + third, third); // middle
recPattern(x, y + 2 * third, third); // lower left

recPattern(x + 2 * third, y + 2 * third, third); // lower right

11

Try This

#:1' #:#
‘ ##1' ### ### q-"'q-
& - L L & L

#1_#

12

