
11/30/20

1

15-104 Introduction to Computing for Creative Practice
Fall 2020

32-Recursion

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514

1

Function Calls
• When a function calls another, that called function runs to

completion and then returns back to where the call was made, and
the program continues from there.

• This can happen in a nested fashion. A function can call another
function, which calls yet another function, etc. When a function
returns, it returns to where it was called.

• Example: A calls B. B calls C. C calls D.
When D completes/returns, which function resumes?
Which function resumes when that function completes?

• The computer keeps track of the functions on a system stack. A
B
C

2

mailto:tcortina@cs.cmu.edu

11/30/20

2

Recursion
• A function can call itself ! Such a function is recursive.
• The computer still keeps track of where we return, even though

the functions all have the same name.
• Example: Factorial

5! = 5 * 4 * 3 * 2 * 1
But we can also say that
5! = 5 * 4!

• In general, n! = n * (n-1)!
• But this could go on forever, when do we stop?

When n = 0, 0! = 1 by definition.

3

Recursion
• A function can call itself ! Such a function is recursive.
• The computer still keeps track of where we return, even though

the functions all have the same name.
• Example: Factorial

5! = 5 * 4 * 3 * 2 * 1
But we can also say that
5! = 5 * 4!

• In general, n! = n * (n-1)!
• But this could go on forever, when do we stop?

When n = 0, 0! = 1 by definition.

4

11/30/20

3

Factorial
var n = 0;
function setup() {

createCanvas(400, 400); frameRate(1);
}
function draw() {

background(220);
var numCircles = factorial(n);
drawCircles(numCircles); // NOT SHOWN
n += 1;

}
function factorial(n) {

if (n == 0) return 1; // base case
return n * factorial(n-1); // recursive case

}

5

Factorial: Trace
factorial(5) = 5 * factorial(4)

factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)

factorial(2) = 2 * factorial(1)
factorial(1) = 1 * factorial(0)

factorial(0) = 1
factorial(1) = 1 * 1 = 1

factorial(2) = 2 * 1 = 2
factorial(3) = 3 * 2 = 6

factorial(4) = 4 * 6 = 24
factorial(5) = 5 * 24 = 120

6

11/30/20

4

Recursive Squares
You know how to create this sketch iteratively (i.e. with a loop).
How would you create this sketch recursively?

Express the problem so its solution requires
a simpler version of itself.

Drawing all squares starting with size s:
• Draw a square of size s and then draw all

of the squares starting with size s-50.
• If the starting size is 0, then you’re done.

7

Recursive Squares
function setup() {

createCanvas(400, 400); rectMode(CENTER);
}
function draw() {

background(220);
drawSquare(350); // initial call
noLoop();

}
function drawSquare(size) {

if (size == 0) return; // base case (non-recursive)
fill(color(random(0,256), random(0,256), random(0, 256)));
square(200, 200, size);
drawSquare(size-50); // recursive call
return;

}
return by itself just exits the function without returning a calculated answer.

8

11/30/20

5

Recursive Squares: Trace
drawSquare(350)

square(200, 200, 350)
drawSquare(300)

square(200, 200, 300)
drawSquare(250)

square(200, 200, 250)
drawSquare(200)

square(200, 200, 200)
drawSquare(150)

square(200, 200, 150)
drawSquare(100)

square(200, 200, 100)
drawSquare(50)

square(200, 200, 50)
drawSquare(0)

Each recursive function
(except the first call)
returns back to the same
function where it was
called but the only thing
left to do is also return.

9

Fractal (self-similar image)
How do we create something like this?

Break the problem down to drawing each of the
five sections. For each of the five sections, break
them down into five sections. Keep doing this
until each section is of size 3 and then draw it.

10

11/30/20

6

Fractal
function draw() {

background(240); fill(0);
recPattern(80, 80, 243);

}
function recPattern(x, y, size)
{

if (size <= 3) rect(x, y, size, size); // base case
} else { // recursive case:

var third = size / 3;
recPattern(x, y, third); // upper left
recPattern(x + 2 * third, y, third); // upper right
recPattern(x + third, y + third, third); // middle
recPattern(x, y + 2 * third, third); // lower left
recPattern(x + 2 * third, y + 2 * third, third); // lower right

}
}

(x,y)

size

size

11

Try This

12

