
11/18/20

1

15-104 Introduction to Computing for Creative Practice
Fall 2020

30 Platform Game

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514

1

A platform game
• The platforms scroll right to left.
• The character will always remain

in the middle of the canvas.
• The character should jump

when a key is pressed.
• If the character is in the air, it will fall.
• If the character lands on a platform, it is safe.
• If the character falls to the bottom, it will “die”.

(but in our game, it will re-emerge, falling from the sky)

2

mailto:tcortina@cs.cmu.edu

11/18/20

2

Platform
• Each platform will be an object

with three data fields:
x: horizontal location (top left)
y: vertical location (top left)
w: width of platform

• Methods:
right – returns the x location of the right end of the platform

(All platforms will have a thickness of 10 pixels.)

3

Platform Code

function newPlatform(px, py, pw) {
var p = {x: px, y: py, w: pw,

right: platRight};
return p;

}

// compute the location of the right end of a platform
function platRight() {

return this.x + this.w;
}

4

11/18/20

3

Setting up the game
var platforms = []; // array of platforms

// To scroll, we will increment offset.
// Everything is shifted left by offset
var offset = 0;

function setup() {
createCanvas(600, 300);
// first platform:
var pl = newPlatform(600, 200, 200);
platforms.push(pl);

}

5

Drawing the game
function draw() {

background("lightblue"); // the sky
fill("green"); stroke("green");
rect(0, height - 50, width, 50); // the ground
fill(0); stroke(0);
for (var i = 0; i < platforms.length; i++) {

var p = platforms[i];
rect(p.x - offset, p.y, p.w, 10);

}
// UPDATE PLATFORM ARRAY HERE (next slide)
offset += 1;

}

6

11/18/20

4

Update Platform Array
// if first platform is offscreen to left, remove it
if (platforms.length > 0 && platforms[0].right() < offset) {

platforms.shift();
}

// if last platform is totally within canvas, make a new one
var lastPlat = platforms[platforms.length-1];
if (lastPlat.right() - offset < width) {

var p = newPlatform(lastPlat.right(), // start location
random(50, 225), // height of new platform
200); // all platforms have width 200 for now

platforms.push(p); // add to our array of platforms
}

7

Adding the Character
• We always draw the character

in the middle of the canvas,
so we only worry about the
vertical (Y) coordinate.

• We need to find which platform is currently in the middle of the
screen, so we do a linear search to find it.

• Then we move the character based on whether it is above, on, or
below the relevant platform.

• The character automatically “wraps around” when it falls, which
means we need no interaction to do some testing.

8

11/18/20

5

Finding platform in middle
var i = 0;
var marioX = width / 2;
while (platforms[i].right() - offset < marioX) {

i += 1;
}
var py = platforms[i].y; // height of middle platform

platforms is the array of platforms
platforms[i] is the ith platform in the array of platforms
platforms[i].right() is the method of the ith platform in the array of platforms

that returns its right coordinate.

platforms[i].y is the y-value of the ith platform in the array of platforms

marioX

py

9

Moving and drawing the character
var marioY = 0; // new global variable, start char. at top
--
if (marioY <= py) { // above or on the platform, stop at py

marioY = min(py, marioY + 1);
} else { // below the platform, stop at height (fall to bottom)

marioY = min(height, marioY + 1);
}
if (marioY >= height) { // if char. hits bottom, reset to top

marioY = 0;
}
// draw the "mario"
fill("brown");
stroke("brown");
rect(marioX, marioY - 20, 20, 20);

10

11/18/20

6

Adding a Jump feature
• To implement jumping,

we start by adding marioDy,
which is the velocity of the
“mario” character.

• New global variable:
var marioDy = 0;
for the vertical velocity of the character:
zero: floating
positive: falling
negative: rising

11

Rising and Falling
if (marioY <= py) { // above or on platform

marioY = min(py, marioY + marioDy);
} else { // below platform

// we don’t want upward movement
if (marioDy < 0) {

marioDy = 0;
}
marioY = min(height, marioY + marioDy);

}
if (marioY >= height) {

marioY = 0; marioDy = 0;
}

If marioDy > 0, then
”mario” is falling (y will
increase).
If marioDy < 0, then
“mario” is rising (jumping).

12

11/18/20

7

Updating platform and “mario”
// move the "landscape"
offset += 1;
// accelerate "mario" with gravity
marioDy = marioDy + 1;

Making “mario” jump:

function keyPressed() {
marioDy = -10;

}

Example of how marioY
changes due to marioDy
over repetitions of draw
assuming a key press
sets marioDy to -5.

13

Fix This
• When the character lands on the platform, marioDy

continues to increase. Fix this.
• When the character jumps, if its right edge touches the

next platform, it still falls. Fix this.

14

