
10/28/20

1

15-104 Introduction to Computing for Creative Practice
Fall 2020

21 Springs (Physics of Motion)

Instructor: Tom Cortina, tcortina@cs.cmu.edu, GHC 4117, 412-268-3514

1

The Universe Consists of Springs
¬ Nearly every solid material can be thought of as a series of particles which are

attached to each other by elastic forces.

¬ From Isaac Newton (1686) we know his second law of motion,
that F = ma. This states that in general, force is proportional to
mass times acceleration.

¬ From Robert Hooke (1678) we know the spring law, F = -kx.
This states that the force applied by a spring, is proportional
(by some constant k) to its distention x (amount of stretch
or compression). The minus sign tells us that the spring’s
“restorative force” happens in the opposite direction.

2

mailto:tcortina@cs.cmu.edu

10/28/20

2

Example
¬ If you stretch a spring (which is rigidly

fixed at one end) one centimeter
to the east, it will apply a restoring force
towards the west.

¬ If you stretch it two centimeters
eastward, it will apply a westerly force
which is twice as strong.

from pstcc.edu

3

Damped Harmonic Motion
¬ Because F = ma and F = -kx, we can derive that ma = -kx.

¬ Interestingly, this is actually a “second-order differential equation” — which
describes a relationship between a particle’s position, x, and its acceleration (or the
rate of change of the rate of change of its position), a.

¬ The solution to such equations always
take the form of an “exponentially damped
cosinusoid”, in what is called
damped harmonic motion:

4

10/28/20

3

The spring constant (k)
¬ Depending on the amount of damping, the spring may be very wiggly, or not.

¬ The constant k is the “spring constant”
which is unique for each material.

¬ When k is low, the material is soft, flexible, stretchy.

¬ When the value of k is high, the material is stiff,
snappy or brittle.
¬ High values of k will expose the limits of Euler integration, our current numerical

method for solving springs here; if k is too high, the simulation will “explode”. (!)

¬ Good values for k in our solver are in the range of 0.01 to 0.5; try 0.1 initially.

5

Particle
// make a new particle (constructor)
function makeParticle(x, y, dx, dy) {

var p = {px: x, py: y, vx: dx, vy: dy,
mass: 1.0, damping: 0.96,
bFixed: false,
bLimitVelocities: false,
bPeriodicBoundaries: false,
bHardBoundaries: false,
addForce: particleAddForce,
update: particleUpdate,
limitVelocities: particleLimitVelocities,
handleBoundaries: particleHandleBoundaries,
draw: particleDraw
}

return p;
}

6

10/28/20

4

Spring
// make a new spring object
function makeSpring(p1, p2, k) {

var s = {p: p1, q: p2,
restLength:
dist(p1.px, p1.py, p2.px, p2.py),
springConstant: k,
update: springUpdate,
draw: springDraw
}

return s;
} p1 and p2 are particles,

so this object stores references to
two other objects!

7

Setting things up
var myParticles = [];
var mySprings = [];

function createParticles(){
var particle0 = makeParticle(250, 200, 0, 0);
var particle1 = makeParticle(350, 200, 0, 0);
myParticles.push(particle0);
myParticles.push(particle1);

}

function createSpringMeshConnectingParticles() {
var K = 0.1; // the spring constant
var p = myParticles[0];
var q = myParticles[1];
var aSpring = makeSpring(p, q, K);
mySprings.push(aSpring);

}

8

10/28/20

5

Drawing
for (var i = 0; i < myParticles.length; i++) {

myParticles[i].update(); // update all particles
}
if (mouseIsPressed && (whichParticleIsGrabbed > -1)) {

myParticles[whichParticleIsGrabbed].px = mouseX;
myParticles[whichParticleIsGrabbed].py = mouseY;

}
for (var i = 0; i < mySprings.length; i++) {

mySprings[i].update(); // update all springs
}
for (var i = 0; i < mySprings.length; i++) {

mySprings[i].draw(); // draw all springs
}
for (var i = 0; i < myParticles.length; i++) {

myParticles[i].draw(); // draw all particles
}

If the user is grabbing a
particle, peg it to the
mouse.

9

Truss (Triangle of springs)
var myParticles = [];
var mySprings = [];

var particle0 = makeParticle(250, 200, 0, 0);
var particle1 = makeParticle(350, 200, 0, 0);
var particle2 = makeParticle(300, 286, 0, 0);

// set boundary behavior
particle0.bHardBoundaries = true;
particle1.bHardBoundaries = true;
particle2.bHardBoundaries = true;

myParticles.push(particle0);
myParticles.push(particle1);
myParticles.push(particle2);

Boundary Behavior:
Bounces structure back
if it hits the side of the
canvas.

10

10/28/20

6

Truss (Triangle of springs)
var K = 0.1;

// Stitch the particles together by a spring.
var p = myParticles[0];
var q = myParticles[1];
var r = myParticles[2];

var aSpring0 = makeSpring(p, q, K);
mySprings.push(aSpring0);
var aSpring1 = makeSpring(q, r, K);
mySprings.push(aSpring1);
var aSpring2 = makeSpring(p, r, K);
mySprings.push(aSpring2);

Boundary Behavior:
Bounces structure back
if it hits the side of the
canvas.

11

Fixed Spring
function createParticles(){

var particle0 = makeParticle(250, 200, 0, 0);
var particle1 = makeParticle(350, 200, 0, 0);
particle1.bFixed = true;
myParticles.push(particle0);
myParticles.push(particle1);

}

function particleUpdate() {
if (this.bFixed == false) {

this.vx *= this.damping;
this.vy *= this.damping;
...

}
}

If the bfixed property is true,
Then when this particle is
updated, its particleUpdate
function does nothing!

Fixed

12

10/28/20

7

Rope (Array of Springs)
var myParticles = [];
var mySprings = [];
var nPoints = 15;

function createParticles() {
for (var i = 0; i < nPoints; i++) {

var rx = map(i, 0, nPoints, 100, 500);
var ry = 100;
var particle = makeParticle(rx, ry, 0, 0);
particle.bHardBoundaries = true;
myParticles.push(particle);

}
}

13

Rope (Array of Springs)
function createSpringMeshConnectingParticles() {

// Stitch the particles together into a mesh by
// connecting neighbors with a spring.

var K = 0.1; // the spring constant
for (var i = 0; i < nPoints - 1; i++) {

var p = myParticles[i];
var q = myParticles[i + 1];
var aSpring = makeSpring(p, q, K);
mySprings.push(aSpring);

}
}

14

10/28/20

8

Rope with Gravity
function createParticles() {

for (var i = 0; i < nPoints; i++) {
var rx = map(i, 0, nPoints, 100, 500);
var ry = 100;
var particle = makeParticle(rx, ry, 0, 0);
particle.bHardBoundaries = true;
myParticles.push(particle);

}
myParticles[0].bFixed = true;
myParticles[myParticles.length-1].bFixed = true;

}

Fixed

In physics and geometry, a catenary is the curve that an
idealized hanging chain or cable assumes under its own weight
when supported only at its ends. The catenary curve has a U-
like shape, superficially similar in appearance to a parabolic arch,
but it is not a parabola. - Wikipedia

15

Try This

16

