
1

1

Trees

Heaps & Other Trees

6B

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

Heap

  A min-heap is a binary tree such that
 - the data contained in each node is less than
(or equal to) the data in that node’s children.
 - the binary tree is complete

  A max-heap is a binary tree such that
 - the data contained in each node is greater than
(or equal to) the data in that node’s children.

 - the binary tree is complete

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

3

Is it a min-heap?

5

14 23

20 16 48 62

53 71

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

Is it a min-heap?

5

14 23

12 26 34 20

24 35

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

3

5

Is it a min-heap?
5

14 23

32 87 90

50 64 53

41

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

6

Using heaps

What are min-heaps good for?
(What operation is extremely fast when
using a min-heap?)

The difference in level between any two leaves
in a heap is at most what?

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

7

Storage of a heap

  Use an array to hold the data.
  Store the root in position 1.

  We won’t use index 0 for this implementation.
  For any node in position i,

  its left child (if any) is in position 2i
  its right child (if any) is in position 2i + 1
  its parent (if any) is in position i/2

 (use integer division)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

8

0 1 2 3 4 5 6 7 8 9 10
5 14 23 32 41 87 90 50 64 53

5

14 23

32 87 90

50 64 53

41

Storage of a heap

For node at i:
Left child is at 2i
Right child is at 2i12
Parent is at i/2

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

5

9

Inserting into a min-heap

  Place the new element in the next available
position in the array.

  Compare the new element with its parent. If the
new element is smaller, than swap it with its
parent.

  Continue this process until either
 - the new element’s parent is smaller than or
equal to the new element, or
 - the new element reaches the root (index 0 of
the array)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

10

Inserting into a min-heap
Insert 43

43

5

14 23

32 87 90

50 64 53

41

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

6

11

Inserting into a min-heap
Insert 18

18 43

5

14 23

32 87 90

50 64 53

41 18

87

18

23

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

12

Inserting into a min-heap
Insert 2

2 87 43

5

14 18

32 23 90

50 64 53

41 2

23

2

18

2

5

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

7

13

Removing from a heap

  Place the root element in a variable to
return later.

  Remove the last element in the deepest
level and move it to the root.

  While the moved element has a value
greater than at least one of its children,
swap this value with the smaller-valued
child.

  Return the original root that was saved.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

14

Removing from a min-heap
Remove min

53

5

14 23

32 87 90

50 64

41

returnValue 5 53

53

14

53

32

53

50

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

8

15

Removing from a min-heap
Remove min

64

14

32 23

50 87 90

53

41

returnValue 14 64

64

23

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

16

Efficiency of heaps

Assume the heap has N nodes.
Then the heap has log2(N+1) levels.
  Insert

 Since the insert swaps at most once per level, the order
of complexity of insert is O(log N)

  Remove
 Since the remove swaps at most once per level, the
order of complexity of remove is also O(log N)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

9

17

Priority Queues

  A priority queue PQ is like an ordinary queue except
that we can only remove the “maximum” element at
any given time (not the “front” element necessarily).

  If we use an array to implement a PQ,
 enqueue is O(______) dequeue is O(______)

  If we use a sorted array to implement a PQ
 enqueue is O(______) dequeue is O(______)

  If we use a max-heap to implement a PQ
 enqueue is O(______) dequeue is O(______)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

18

General Trees

  A general tree consists of nodes that
can have any number of children.

  Implementation
using a binary tree:

Each node has 2 fields:
firstChild, nextSibling

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

10

19

Balanced Trees

  Binary search trees can become quite
unbalanced, with some branches being much
longer than others.
  Searches can become O(n) operations

  These variants allow for searching while
keeping the tree (nearly) balanced:
  2-3-4 trees
  Red-black trees

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

20

2-3-4-trees

  A 2-3-4 Tree is a tree in which each internal
node (nonleaf) has two, three, or four children,
and all leaves are at the same depth.
  A node with 2 children is called a "2-node".
  A node with 3 children is called a "3-node".
  A node with 4 children is called a "4-node".

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

11

21

Sample 2-3-4-tree

30 50 70

10 15 20 80 90 40 60

Insert 100:

30

10 15 20 80 90 100 40 60

50

70

whenever a 4-node
is encountered on the
way to the insert point,
it is split

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

22

Red-Black Trees

  A red-black tree has the advantages of a
2-3-4 tree but requires less storage.

  Red-black tree rules:
 - Every node is colored either red or black.
 - The root is black.
 - If a node is red, its children must be black.
 - Every path from a node to a null link must

 contain the same number of black nodes.
15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

12

23

2-3-4 Trees vs. Red-Black Trees

x

<x >x

x

<x >x

"2-node" in a 2-3-4 tree equivalent red-black tree configuration

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

24

2-3-4 Trees vs. Red-Black Trees

x y

<x >x
<y >y

y x or

<x >x
<y

>y <x

>x
<y >y

x y

"3-node" in a 2-3-4 tree equivalent red-black tree configurations

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

13

25

2-3-4 Trees vs. Red-Black Trees

x y z

<x >x
<y

>y
<z >z

y

<x >x
<y

>y
<z >z

"4-node" in a 2-3-4 tree equivalent red-black tree configuration

x z

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

26

Sample Red-Black Tree

30 50 70

10 15 20 80 90 40 60

Original 2-3-4 tree:

50

Equivalent red-black tree: 30

15 60 40 80

70

10 20 90
15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

14

27

Rotation
  Insert 85:

violates
red-black tree
rules

10 20

30 70

90

85

50

15 40 60 80

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

28

Rotation (cont'd)

70

 rotate right rotate left

See textbook for additional cases where rotation is required.

70 70

90

90

90
85

85 80

60 60 60 80 80 85

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

15

29

Additional
Self-Balancing Trees

  AVL Trees
  2-3 Trees
  B-Trees
  Splay Trees

  (co-invented by Prof. Danny Sleator at CMU)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

