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Trees 

Heaps & Other Trees  

6B 
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Heap 

  A min-heap is a binary tree such that  
 - the data contained in each node is less than 
(or equal to) the data in that node’s children. 
 - the binary tree is complete 

  A max-heap is a binary tree such that  
 - the data contained in each node is greater than 
(or equal to) the data in that node’s children. 

 - the binary tree is complete 
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Is it a min-heap? 

5 

14 23 

20 16 48 62 

53 71 
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Is it a min-heap? 

5 

14 23 

12 26 34 20 

24 35 
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Is it a min-heap? 
5 

14 23 

32 87 90 

50 64 53 

41 
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Using heaps 

What are min-heaps good for?  
(What operation is extremely fast when  
using a min-heap?)  

The difference in level between any two leaves 
in a heap is at most what? 
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Storage of a heap 

  Use an array to hold the data. 
  Store the root in position 1.  

  We won’t use index 0 for this implementation. 
  For any node in position i,  

  its left child (if any) is in position 2i 
  its right child (if any) is in position 2i + 1 
  its parent (if any) is in position i/2  

 (use integer division) 
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0 1 2 3 4 5 6 7 8 9 10 
5 14 23 32 41 87 90 50 64 53 

5 

14 23 

32 87 90 

50 64 53 

41 

Storage of a heap 

For node at i: 
Left child is at 2i 
Right child is at 2i12 
Parent is at i/2 

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 



5 

9 

Inserting into a min-heap 

  Place the new element in the next available 
position in the array. 

  Compare the new element with its parent. If the 
new element is smaller, than swap it with its 
parent.  

  Continue this process until either 
 - the new element’s parent is smaller than or 
equal to the new element, or 
 - the new element reaches the root (index 0 of 
the array) 
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Inserting into a min-heap 
Insert 43 

43 

5 

14 23 

32 87 90 

50 64 53 

41 
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Inserting into a min-heap 
Insert 18 

18 43 

5 

14 23 

32 87 90 

50 64 53 

41 18 

87 

18 

23 
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Inserting into a min-heap 
Insert 2 

2 87 43 

5 

14 18 

32 23 90 

50 64 53 

41 2 

23 

2 

18 

2 

5 
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Removing from a heap 

  Place the root element in a variable to 
return later. 

  Remove the last element in the deepest 
level and move it to the root. 

  While the moved element has a value 
greater than at least one of its children, 
swap this value with the smaller-valued 
child. 

  Return the original root that was saved.  
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Removing from a min-heap 
Remove min 

53 

5 

14 23 

32 87 90 

50 64 

41 

returnValue   5 53 

53 

14 

53 

32 

53 

50 
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Removing from a min-heap 
Remove min 

64 

14 

32 23 

50 87 90 

53 

41 

returnValue   14 64 

64 

23 
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Efficiency of heaps 

Assume the heap has N nodes. 
Then the heap has log2(N+1) levels. 
  Insert 

 Since the insert swaps at most once per level, the order 
of complexity of insert is O(log N) 

  Remove 
 Since the remove swaps at most once per level, the 
order of complexity of remove is also O(log N) 
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Priority Queues 

  A priority queue PQ is like an ordinary queue except 
that we can only remove the “maximum” element at 
any given time (not the “front” element necessarily). 

  If we use an array to implement a PQ,  
 enqueue is O(______)   dequeue is O(______) 

  If we use a sorted array to implement a PQ 
 enqueue is O(______)   dequeue is O(______) 

  If we use a max-heap to implement a PQ 
 enqueue is O(______)   dequeue is O(______) 

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 

18 

General Trees 

  A general tree consists of nodes that  
can have any number of children. 

  Implementation 
using a binary tree: 

Each node has 2 fields: 
firstChild, nextSibling 
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Balanced Trees 

  Binary search trees can become quite 
unbalanced, with some branches being much 
longer than others. 
  Searches can become O(n) operations   

  These variants allow for searching while 
keeping the tree (nearly) balanced: 
  2-3-4 trees 
  Red-black trees 
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2-3-4-trees 

  A 2-3-4 Tree is a tree in which each internal 
node (nonleaf) has two, three, or four children, 
and all leaves are at the same depth. 
  A node with 2 children is called a "2-node". 
  A node with 3 children is called a "3-node". 
  A node with 4 children is called a "4-node". 
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Sample 2-3-4-tree  

30 50 70 

10 15 20 80  90 40 60 

Insert 100: 

30 

10 15 20 80  90  100 40 60 

50 

70 

whenever a 4-node 
is encountered on the 
way to the insert point, 
it is split 
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Red-Black Trees 

  A red-black tree has the advantages of a  
2-3-4 tree but requires less storage. 

  Red-black tree rules: 
 - Every node is colored either red or black. 
 - The root is black. 
 - If a node is red, its children must be black. 
 - Every path from a node to a null link must 

 contain the same number of black nodes. 
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2-3-4 Trees vs. Red-Black Trees 

x 

<x >x 

x 

<x >x 

"2-node" in a 2-3-4 tree equivalent red-black tree configuration 
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2-3-4 Trees vs. Red-Black Trees 

x  y 

<x >x 
<y >y 

y x or 

<x >x 
<y 

>y <x 

>x 
<y >y 

x y 

"3-node" in a 2-3-4 tree equivalent red-black tree configurations 
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2-3-4 Trees vs. Red-Black Trees 

x  y  z 

<x >x 
<y 

>y 
<z >z 

y 

<x >x 
<y 

>y 
<z >z 

"4-node" in a 2-3-4 tree equivalent red-black tree configuration 

x z 

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 

26 

Sample Red-Black Tree 

30 50 70 

10 15 20 80  90 40 60 

Original 2-3-4 tree: 

50 

Equivalent red-black tree: 30 

15 60 40 80 

70 

10 20 90 
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Rotation 
  Insert 85: 

violates 
red-black tree 
rules 

10 20 

30 70 

90 

85 

50 

15 40 60 80 
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Rotation (cont'd) 

70 

 rotate right  rotate left 

See textbook for additional cases where rotation is required. 

70 70 

90 

90 

90 
85 

85 80 

60 60 60 80 80 85 
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Additional  
Self-Balancing Trees 

  AVL Trees 
  2-3 Trees 
  B-Trees 
  Splay Trees  

  (co-invented by Prof. Danny Sleator at CMU) 
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