
1

1

Java Classes

Writing our own classes
to model objects

2

Java Classes

  A class of objects of the same type are modeled
using a Java class.

  A Java class contains:
  fields - store the "state" of an object
  methods - represent the "behaviors" that this object

can perform
  some methods may create an object of this class

(constructors)
  some methods may change the state of the object (mutators)
  some methods may access information about the current

state of the object (accessors)

3

Object Fields

  Every object of a class has a set of properties that
define the object
  Example: If an object belongs to the Car class,

two of its properties are the make and the mileage.
  Each property has some "value" once the object is

created
  Example: make = "Olds", mileage = 15110

  The values of the properties defines the state of
the object

4

Fields
(sometimes called instance variables)
public class Car

{

private String make;

private int mileage;

// methods go here

}

All object fields should be defined as private.

in
Car

class

5

Constructors
  A constructor is a method that creates an

instance of the class.
  An instance is one member of the class.
  Example:

 In a program we might write
 Car myCar = new Car("Olds", 15110);

 This would cause the constructor of the Car class
to execute, giving it two arguments to define the
initial state of the car.

6

Constructors

 public Car(String carMake,  

int initialMileage)

{ 

make = carMake;

mileage = initialMileage;

}

Don't use the same names for the parameter
variables and the object fields.

in
Car

class

2

7

A sample program that uses
the Car class

public class CarManager {

public static void main(String[] args) {

Car myCar = new Car("Olds", 15110);

// instructions to use this car  

// goes here...

}

}

in
CarManager

class

8

make

mileage

myCar

public class Car {

private String make;

private int mileage; 

public Car(String carMake,
int initialMileage) {

make = carMake;

mileage = initialMileage;

}

// other methods go here

}

public class CarManager {

public static void main(String[] args) {

Car myCar = new Car("Olds", 15110);

// instructions to use this car goes here

}

}

15110

initialMileage

carMake

PARAMETERS

"Olds"

15110

"Olds"

9

Constructors
  We may have more than one constructor.

  Another constructor might be used if we don't
know the complete state of an object,

  We could use default values for properties that
are not specified.

  Example:
 In our main method, we might write
 Car myOldCar = new Car("Saturn");

in
CarManager

class

10

Constructors

public Car(String carMake)

{ 

make = carMake;

mileage = 0;

}

We use a default value of 0 for the mileage
if it is not specified.

This is another example of overloading.

in
Car

class

11

Accessors
  An accessor is a method that accesses the

object without changing its state.
  Example:

 In our main method, we might write
int totalMiles =

 myCar.getMileage() + myOldCar.getMileage(); 

 This would cause the getMileage method to be
executed, once for each car. This method does not
require any arguments to be sent in from our
program in order to do its job.

in
CarManager

class

12

Accessors

public int getMileage()

{ 

return mileage;

}

All methods except the constructor require
a return type (the type of the result that
the method returns back once it's done).

return type

in
Car

class

3

13

Accessors

public double getCostOfOwnership()

{ 

double cost = 0.45 * mileage;

return cost;

}
 This accessor calculates and returns the cost of

ownership for a car, assuming it costs 45 cents to
maintain the car per mile driven.
Note that the state of the car does not change
when this method runs.

return type

in
Car

class

14

Accessors
  How would we call the getCostOfOwnership from

the main method of MyProgram?

Car.getCostOfOwnership();

NO

myCar.getCostOfOwnership();

NO*

myCar.getCostOfOwnership(15100);
NO

System.out.println( 

myCar.getCostOfOwnership());
YES

double myCost = 

myCar.getCostOfOwnership();
YES

in
CarManager

class

15

Mutators
  A mutator is a method that could change the

state of an object in this class.
  Example:

 In our main method, we might write
 myCar.drive(500);
// drive 500 miles 

 This would cause the drive method to be
executed, with the integer argument 500 sent to
this method to indicate how many miles the car
was driven.

in
CarManager

class

16

Mutators

public void drive(int miles)

{ 

mileage = mileage + miles;

}

Since this method performs a computation
but does not return a result, the return type
is specified as void.

return type

in
Car

class

17

Mutators
  If we call a void method, then this call is

written as single instruction in a program.
  It is not embedded in other operations.

 myCar.drive(500);

OK

System.out.println( 

myCar.drive(50));

NO

int totalMiles =

myCar.getMileage() + 

myCar.drive(50);

NO

in
CarManager

class

18

Mutators

public void resetMileage()

{

// this is normally illegal

// in real life

mileage = 0;

}

To call this method from MyProgram:
myOldCar.resetMileage();

in
Car

class

4

19

toString
  A special accessor named toString is a

method that returns a string containing the
current state of the object.

public String toString() {

return "Make = " + make +  

", Mileage = " + mileage;

}

  Note: The signature MUST be as shown.
  This method is typically used for debugging.

in
Car

class

20

Using toString
public class CarManager {

public static void main(String[] args) {

Car myCar = new Car("Olds", 15110);

Car myOldCar = new Car("Saturn");

myCar.drive(1234);

myOldCar.resetMileage();

System.out.println(myCar);

System.out.println(myOldCar);

}

}
 When you try to print an entire object (as shown),

you automatically call its toString method.

in
CarManager

class

21

Writing our own equals method

  Example: Two cars are equal if they have the same
make and the same mileage.

 public boolean equals(Car otherCar)
 {
 if (this.make.equals(otherCar.make)
 && this.mileage == otherCar.mileage)
 return true;
 else
 return false;
 }

  Usage: if (myCar.equals(myOldCar)) ...

this refers to the object
running this method

in
Car

class

in
CarManager

class

22

Writing our own equals method
(cont'd)

  Use of this is optional.
  Also, since equals returns a boolean result equal to

the condition in the if statement, we can just write this:
 public boolean equals(Car otherCar)
 {
 // alternate version
 return (make.equals(otherCar.make)
 && mileage == otherCar.mileage);
 }

More about toString and equals
later in the semester...

in
Car

class

23

Revisiting the Die class

public class Die {

private int faceValue;

public Die() {

faceValue = 1;

}

public void roll() {

faceValue = (int)(Math.random()*6)+1;

}

public int getFaceValue() {

return faceValue;

}
 24

Revisiting the Die class
(cont'd)

public _______ toString() {

___________________________________;

}

public _______ equals(Die otherDie) {

___________________________________;

}

}

// end of Die class

