

 1

1

Text Files

Additional ways to
use Scanner

2

Text Files vs. Binary Files

 Text files store data as a sequence of binary
character codes.
 Text files can be read by standard editors.
 TXT, HTML, PS, JAVA

 Binary files store data in a raw format where the
binary data is not treated as characters.
 Images: GIF, JPG, BMP
 Audio: MP3, WAV
 Video: MOV, AVI
 Documents: DOC, WP, PDF, XLS

3

Text Files in Java

 Reading from a text file is similar to reading
from the keyboard.

Scanner scan =

new Scanner(new File(nameOfFile));
System.out.println("Reading from file...");
String fileInput = scan.nextLine();

4

Text Files in Java

 Writing to a text file is similar to displaying to
the screen.

PrintWriter outfile = new PrintWriter(
new FileWriter(nameOfFile));

System.out.println("Writing to file...");

outfile.print(outputText);
outfile.println(outputText);
outfile.close();

5

IOException

 Opening up a text file for reading can cause
an IOException to be thrown if the file
cannot be found.

 Opening up a text file for writing can cause
an IOException to be thrown if there is a
problem with the file system so a file cannot
be created (out of space, etc.)

 More about exceptions later this semester.

6

Initialization
public static void main(String[] args)
throws IOException {

 Scanner scan = new Scanner(
 new File("data.txt"));
 PrintWriter outfile = new PrintWriter(

 new FileWriter("results.txt");

// YOUR CODE GOES HERE
 }
}

REQUIRED IMPORTS:
import java.util.*;

import java.io.*;

 2

7

Example: Line Numbering

public static void main(String[] args)
throws IOException {

 Scanner scan = new Scanner(
new File("data.txt"));

PrintWriter outfile = new PrintWriter(
new FileWriter("results.txt"));

String fileInput;
int lineNum = 0;

8

Example: Line Numbering
(cont'd)

while (scan.hasNextLine()) {
fileInput = scan.nextLine();
lineNum++;
outfile.println(lineNum + ": " +

 fileInput);
}
outfile.close();

}
}

9

Example:
Initializing an array from a text file

8
19
53
25
77
34
-67
153
2

first entry indicates the number of data values
in the file (not including this value)

data.txt

10

Example:
Initializing an array from a text file

public static void main(String[] args)
throws IOException {

 Scanner scan = new Scanner(
new File("data.txt"));

 int numValues = scan.nextInt();
int[] dataArray = new int[numValues];
for (int i = 0; i < numValues; i++)

dataArray[i] = scan.nextInt();
...

11

Using Scanner in other ways

 Goal: We wish to add up all of the numbers
listed in a file, but the file may have more
than one number per line.
 No arrays are used here.

 We can use one Scanner to read from the
file.

 We can use another Scanner to take each
line we read from the file and extract each
number on that line one by one.

12

Example:
A more complex text file

48 23 53
19 13
53 932 324 53
25 12 -133 4245 472
77
9 156 34

(first entry does NOT indicates the number of
data values in the file!!!)

nums.txt

define one
Scanner
to read

each line
from the file

one at a time

define another
Scanner
to read
each integer
from the line,
one at a time

 3

13

Using Scanner in other ways
public static void main(String[] args)

throws IOException {
 Scanner filescan = new Scanner(new File("nums.txt"));

 int sum = 0;
 while (filescan.hasNextLine()) {

 String line = filescan.nextLine();
 Scanner linescan = new Scanner(line);
 while (linescan.hasNextInt()) {

 sum += linescan.nextInt();
 }
 }
 System.out.println("Total = " + sum);
}

