
1

1

An Introduction to
Recursion

"To understand recursion,
you must first understand recursion"

2

Recursion

 A recursive function is a function that is defined
in terms of itself.

 Every recursive definition must have a base
case that is not recursive.
 The non-recursive nature of the base case allows us

to then solve previous recursive steps.
 There can be more than one base case.

3

Thinking Recursively

 Operation: Advance Wally forward until it can’t
go forward anymore

 If Wally can’t move forward one step, stop.
 Otherwise, move Wally forward one step and

advance Wally forward until it can’t go forward
anymore. RECURSION

(Operation defined
in terms of itself)

BASE CASE
(Operation not defined
in terms of itself)

4

Factorial

 n! = n * (n-1) * (n-2) * ... * 2 * 1 for n > 0
= 1 for n = 0

 But, since (n-1)! = (n-1) * (n-2) * 2 * 1, we can use
recursion to define the factorial function:
n! = n * (n-1)! for n > 0

= 1 for n = 0 (base case)
 Example:

4! = 4*3! = 4*(3*2!) = 4*(3*(2*1!)) = 4*(3*(2*(1*0!)))
= 4*(3*(2*(1*1))) = 4*(3*(2*1)) = 4*(3*2) = 4*6 = 24

5

Factorial in Java

public static int factorial(int n) {

// Precondition: n >= 0

int result;

if (n == 0)

result = 1;

else

result = n * factorial(n-1);

return result;

 }

6

Fibonacci Numbers in Java

fibn = fibn-1 + fibn-2 for n >= 2
fib1 = 1
fib0 = 1

public static int fib(int n) {

// Precondition: n >= 0
if (n <= 1)

return n;
else

return fib(n-1) + fib(n-2);
}

2

7

Greatest Common Divisor

public static int gcd(int m, int n) {

// Precondition: m > 0, n > 0

if (m % n == 0)

return n;

else

return gcd(n, m % n);

}

8

Sum of 1 + 2 + ... + n

public static int sum(int n) {

// Precondition: n >= 1

if (n == 1)

return 1;

else

return ________________________;

}

9

Assert

assert boolean_condition ;
 If assertion checking is enabled and the condition is false,

the program terminates with an AssertionError.
 You can use asserts to test any condition you believe is

true to make sure it really is during runtime. This is used
for debugging purposes.

 Once you are done testing, you can run the program with
assertion checking disabled for the program to run faster.

 Enabling Assertion Checking:
 In Eclipse: Open Run Dialog, select Arguments,

enter -ea for VM Arguments and click Apply.

10

Sum of 1 + 2 + ... + n again

public static int sum(int n) {

assert n >= 1;

if (n == 1)

return 1;

else

return ____________________;

}

