

 1

1

Methods

Creating Computational
Abstractions

2

How methods work

 A method is a block of program code that can be
called from other parts of your program.

 Methods may require arguments when they are
executed to provide data for the method to use.

 Methods may return a computed result back to the
program statement that calls the method.

 Example method signatures from the String API:
 int length()
 char charAt(int position)
 String substring(int beginIndex, int endIndex)

3

About methods

 Every Java program starts execution with the main
method.

 The main method can call other methods to do part
of the work of the program.
 These methods can be part of other classes.
and
 These methods can be part of the class containing main.

 Static vs. non-static methods
 Methods called on objects are non-static.
 Methods called directly without creating objects are static.

4

Writing static methods

public static return-type method-name (parameter-list)

parameter-list
 A list of variables (and their data types) to hold data

that is passed to the method when it is called.
 This list can be empty.
return-type

 A data type indicating the type of the data that is
returned back to the instruction that calls this method.

 If no data is returned back, use void.

5

Example

public static void displayQuestion()
{
System.out.println

("What food does Homer like?");
}

6

Another Example

public static void displayScores
(int score1, int score2)

{
System.out.println("***************");
System.out.println("Player 1: "+ score1);
System.out.println("Player 2 :"+ score2);
System.out.println("***************");

}

 2

7

Calling These Methods

public static void main(String[] args) {
// examples
displayQuestion();
System.out.println("DONUTS!");
displayScores(10, 3);
int value = 12;
displayScores(value, value+4);

}
8

return statement

return value ;
 Returns the indicated value to the instruction that

called this method.
 The value can be a variable or an expression.
 The data type of the indicated value must match the

return type indicated in the signature of the method.
 If a return statement is executed, control passes

back to the calling method immediately. (Any
remaining instructions in this method are not
executed.)

9

Example

public static int computeSum(int n) {
// computes and returns the sum of
// 1 + 2 + ... + n assuming n > 0
int sum = n * (n+1) / 2;
return sum;

}

parameter

a variable declared
in a method is
called a local
variable
(its scope is only
the method where
it is declared)

10

Calling computeSum

public static void main(String[] args) {
System.out.println("1+2+3+4+5+6+7 = ");
System.out.println(computeSum(7));

}

argument
static method computeSum
goes here, after main

11

How it works

7 n

main
System.out.println(
 computeSum(7))

computeSum
public static int
 computeSum(int n)

7

return sum1+2+...+7 =
28

12

Another example

public static double computeAvgGrade
(int total, int numGrades)

{
if (numGrades <= 0)

return -1.0;
return (double)total/numGrades;

}

parameters

 3

13

Calling computeAvgGrade
(from another method in the same class, like main)

System.out.println(
"Input sum of all scores: ");

int sum = scan.nextInt();
System.out.println(
"Input number of scores: ");

int count = scan.nextInt();
double average =

computeAvgGrade(sum, count);
System.out.println(average);

arguments

14

How it works

15100sum

200count

75.5average

200

total

numGrades

main
average =
computeAvgGrade(sum,count)

computeAvgGrade
public static double
 computeAvgGrade(int total,
 int numGrades)

15100

return
(double)total/numGrades

15

Exercise 1

public static int findMax(int x, int y) {
// returns the maximum of x and y

}
16

Exercise 2

Write a code fragment that asks the user for two integers and
outputs the maximum of the two integers using the method
you just wrote in the previous exercise.

Scanner scan = new Scanner(System.in);
System.out.println("Input first number");
int num1 = scan.nextInt();
System.out.println("Input second number");
int num2 = scan.nextInt();
System.out.println("The maximum is " +

______________________________________);

17

Calling non-void methods

 If you call a method that has a non-void return type,
you should indicate in your instruction what you will
do with the returned data.
 Print it out.

System.out.println(computeSum(n));

 Store the result in a variable for later use.
average =
 computeAvgGrade(total, numGrades);

18

Calling void methods

 If you call a method that has a void return type, you
must call this method by itself as an instruction - not
embedded in another operation.
 Correct:

displayQuestion();
displayScores(15, 100);

 Incorrect:
System.out.print(displayQuestion());
total = displayScores(15, 100);

 4

19

Overloading

 Methods can have the same name but
different parameter lists (number of
parameters, types of parameters)

 The compiler can figure out which method
you are calling based on how many and the
types of the arguments that you supply when
you call the overloaded method.

 Example: substring in String

20

Overloading Example

public static int computeSum(int x, int y)
{
// returns x+(x+1)+...+y assuming y > x
// and x > 0 and y > 0
int sum1 = y * (y+1) / 2; // 1+...+y
int sum2 = (x-1) * x / 2; // 1+...+(x-1)
return sum1 - sum2 ;

}

21

Another Way

public static int computeSum(int x, int y)
{
// returns x+(x+1)+...+y assuming y > x
// and x > 0 and y > 0
int sum1 = computeSum(y); // 1+...+y
int sum2 = computeSum(x-1);// 1+...+(x-1)
return sum1 - sum2 ;

}

22

Calling computeSum

public static void main(String[] args)
{
System.out.println("1+2+3+4+5+6+7 = ");
System.out.println(computeSum(7));
System.out.println("5+6+7+8+9+10 = ");
System.out.println(computeSum(5,10));

}

23

Overloading ambiguity

public static int compute(int x, int y)
{
....

}
public static int compute(int a, int b)
{
....

}

compiler sees these as the
same parameter list (2 ints)
- SYNTAX ERROR

