
1


1 

Object-Oriented 
Programming  

Inheritance 

2 

Inheritance 

  In object-oriented programs, we use 
inheritance as one way to reuse program 
code. 

  In Java, if class B extends class A, then B 
inherits (receives) all methods and fields 
from A. 
  Class B does not have to redefine these fields or 

methods. 
  Class A is called the superclass (or parent class). 
  Class B is called the subclass (or child class). 

3 

Example 

Which class is the superclass and  
which class is the subclass? 

Vehicle 
 
 
 
Car


Apple 
 
 
 
Fruit


Square 
 
 
 
Rectangle 

4 

Inheritance (cont'd) 
class B extends class A 
  If the inherited variables or methods of A 

are public, these are accessible by 
instances of B (or users of these 
instances). 

  If the inherited variables or methods of A 
are private, these are not directly 
accessible by instances of B (or users of 
these instances). 

5 

Inheritance (cont'd) 

  In addition to the methods inherited by the 
superclass, the subclass can define its own 
fields and methods. 

  These fields and methods are defined for 
the subclass but not for the superclass. 

6 

All classes are related 

  Every class in Java inherits from another class, either 
explicitly (using extends) or implicitly. 

  Example: 
 public class Taxi extends Car { ... }


  Classes that do not explicitly inherit from another 
class inherit from the Java class Object. 

  Example: 

public class Car extends Object { ... }




2


7 

Object 

  Object is the direct or indirect superclass of all 
classes in Java  
  except which one? 

  Two methods inherited from Object: 
  public boolean equals(Object obj)

  public String toString()


  Even if you don't write an equals or toString 
method for your class, your class has these 
methods since they are inherited from Object. 

8 

Inheriting from Object


  public boolean equals(Object obj)

  Returns true if this object and the object in the 

parameter reference the same single object in 
computer memory. 

  public String toString()

  Returns a string that contains the name of the 

class followed by an @ symbol followed by the 
hexadecimal representation of the hash code 
of the object. 

DO WE REALLY WANT  TO INHERIT THESE? 

9 

Overriding methods 

  A subclass can redefine inherited methods if the 
inherited method doesn't do exactly what the 
subclass needs. 

  To override an inherited method, the subclass' 
method must use the exact same signature as the 
inherited method that is being overridden. 

  If an inherited method is overridden, the user of 
the subclass cannot access the overridden 
method any longer. 

Don't confuse overriding with overloading! 
10 


Object (superclass) 

public String toString()


{ 


}


Overriding toString 

Car (subclass) 
public String toString()

{


return "Make = " + make + ", Mileage = " +



mileage;


}


A program that creates a Car instance cannot access 
Object's toString method directly if Car overrides it. 

11 

What's wrong? 

public String tostring()

{


return "Make = " + make +  


", Mileage = " + mileage;

}


12 

Writing equals (the old way) 

  Two cars are equal if and only if they have the same 
mileage and the same make. 

public boolean equals(Car otherCar)

{


return 


 
this.mileage == otherCar.mileage 


 
&& this.make.equals(otherCar.make);

}
 But this method doesn't override the inherited equals  

method from Object (not the same signature)! 



3


13 

Overriding equals (correctly) 

  Override by using the same signature as in Object. 

public boolean equals(Object obj)

{


Car otherCar = (Car)obj;


return (this.mileage == otherCar.mileage


 
&& this.make.equals(otherCar.make);

} Use typecasting to tell the compiler 

that the object really is a Car.  

equals method in Object  
requires an Object parameter 

14 

Overriding equals (incorrectly) 

public boolean equals(Object obj)

{


return (this.mileage == obj.mileage



 
&& this.make.equals(obj.make);

}


The Object class does not have  
a mileage or a make field. 

15 

Inheritance in the Java API 

  Look at the Java API for the class Vector. 

16 

What's an abstract class? 
  An abstract class cannot be instantiated 

(constructed using a constructor). 
  It usually contains one or more abstract methods (methods 

that have a signature but no implementation). 
  Subclasses of abstract classes must provide an 

implementation for all inherited abstract methods by 
overriding the abstract methods. 

  Example: Suppose an abstract class named 
Vehicle has Car, Truck, and Motorcycle as 
subclasses. 
  By defining the drive method as abstract, we leave it to 

the subclasses to define it, but all three classes must use the 
same signature (so all 3 vehicles drive "the same way"). 

17 

Summary 

  All classes in Java are related through 
inheritance. 
  We explicitly inherit from another class by using 

 the keyword extends when we define the class. 
  We implicitly inherit from the class Object if we do not 

explicitly indicate a superclass. 
  Although a class inherits from another class, we 

cannot access private variables or methods 
directly from the subclass. 

  We can use the principle of overriding to redefine 
inherited methods. 


