Introduction to
Computer Programming

Basics of Java programming

o0
oo

Methods

e Each class has one or more methods.

e A method is a collection of instructions that
are executed in the order given.

e Each Java program must have (at the very
least) a main method.

e The main method is the first method
executed in the program.

e The main method can call other methods to
do a part of the work of the program.

Example

public class SimpleExample

{

public static void main(String[] args)

{

System.out.println("My favorite food is

+ "pizza.");

+ represents concatenation.

Basic form of a Java program

e Every Java program is made up of 1 or more
Java classes.

e Syntax:

public class ClassName

{

Example

public class SimpleExample
{
public static void main(String[] args)
{
System.out.print("My favorite food is ");
System.out.println("pizza.");
}

¥ e print and println are methods in

the System.out class.
* System.out is already written for you.

Variables

e Each method can define one or more
variables to store information.

A variable requires a data type and a name.
Examples:

int exitNumber;

double arealInAcres;
char parkingLot;
boolean lightSwitchOn;
String teamName;



Variables

e Variables can be declared and initialized, or
they can declared first and initialized later.

e Examples:
int exitNumber = 3;
double areaInAcres = 124.54;
char parkingLot;
boolean lightSwitchOn;
String teamName = "Steelers";

parkingLot = 'C';
lightSwitchOn = true;

o0
L[]

Numerical Primitives

TYPE NUMBER RANGE

OF BITS OF VALUES

byte 8 -27 to 271

Short 16 -215 to 215-1

int 32 -281 to 2311

long 64 -263 o 263-1

Float 32 ~7 decimal digits

double 64 ~15 decimal digits
00
e0e
o0
(]

Using variables

int x = 15; Use original value of x
int y = 100; for each example.
x =
1 X =y;

2 x=x *y+1;

3 x=x * (y + 1);

Primitive Variables

Primitive variable types are:

e byte, short, int, long, float, double,
char, boolean

Primitive variables only hold data. They don't have

any other special abilities.

Numerical variables can only hold data values in

specific ranges given by their type.

Character variables only hold one symbol (letter,

digit, punctuation, space, etc.)

Boolean variables only hold true or false

(more about boolean soon)

Using variables

e Assignment Statement

e variable = expression ;

e The single variable on the left side of the = sign is
assigned the value of the expression on the right
side of the = sign.

e The expression can be a simple variable or a
more complex calculation.

e Generally, the data type of the variable and the
expression should be the same.

e There are a few exceptions we'll see.

Using variables

int x = 15; Use original value of x
int y = 100; for each example.
x =
4



Using expressions

e We can build numerical expressions using
the following arithmetic operators:

o + addition

o - subtraction

° * multiplication

o/ division (more on this shortly)
e % modulo (more on this shortly)

e Operations are evaluated based on
precedence, just like regular mathematics.
e Use parentheses to force other precedence.

o0
oo

o0
L]
Division and Modulo (cont'd)

int a = 100; double z = 100.0;

int b = 40; double y = 40.0;

int c; double x;

S5c =a % b;

6c =b % a;
00
e0e
o0
(]

Example

public class EggCalculator {
public static void main(String[] args) {
int numEggs = 15100;

int numDozens = ;

System.out.print("You have " + numDozens);
System.out.print (" dozen eggs and ");

System.out.println(
+ " left over.");

} (There are 12 eggs in 1 dozen eggs.)

Division and Modulo

int a = 100; double z = 100.0;

int b = 40; double y = 40.0;

int c; double x;

1c = a / b;

2x =z / y;

3c =b / a;

4x =y / z;

1
o0
o000
L]
Mixing Types

int a = 100; double z = 100.0;

int b = 40; double y = 40.0;

int c; double x;

7x = a / b; <+ widening
8c =z / y; <+ narrowing

9 c = (int)(z / y);
typecasting

Round-Off Errors

e Floating point numbers are stored with a
limited number of bits in computer memory.

e Some floating point numbers may not be able to
be stored exactly.

Example: 0.1,, (one-tenth)

In binary, one-tenth is 0.00011...

Start a double variable x with a value of 0.0.
Add 0.1 to x ten times and output x.

You don't get 1.0!



