
1

1

Arrays Revisited

Arrays of object references

2

Arrays of Objects

  We can use arrays to hold a collection of
references to objects of the same type.
  Technically in Java, the types of the objects do not

have to be exactly the same, but for now, we'll
assume they are.

  Initially, when we declare an array of object
references, all cells of the array contain the
value null.

  Example:
 String[] month = new String[13];

3

Arrays of Objects

  Each cell of an array of object references can hold
one reference to an object.

  Example:
 month[1] = new String("January");

month[2] = "February";

0 1 2 3 4 5 6 7 8 9 10 11 12
null null null null null null null null null null null

month

"January" "February"
We're not using cell 0

for convenience

4

Arrays of Objects

  Using the array name and subscript, we obtain a
reference. If the reference is not null, we can call a
method on the object that is referenced.

  Example:

int j = month[1].length();

char letter = month[2].charAt(0);

0 1 2 3 4 5 6 7 8 9 10 11 12
null null null null null null null null null null null

month

"January" "February"

5

NullPointerException

  Using the array name and subscript, we obtain a
reference. If the reference is null, we cannot call a
method on the object that is referenced.

  Example:

System.out.println(month[0].charAt(3));

0 1 2 3 4 5 6 7 8 9 10 11 12
null null null null null null null null null null null

month

"January" "February"
month[0] is null here, so we
can't call a method if there is

no object referenced
6

Example

  Assume that all 12 month names are referenced
from our array month.
  Remember: we're not using cell 0 this time.

  To print out all of the month names in the format:
 Jan 
Feb 
Mar 
...etc... 

 for (int i = 1; i <= 12; i++)

System.out.println( 

month[i].substring(0,3));

2

7

Jai Alai

8

Official Jai Alai Rules

  Usually 8 teams participate. Teams line up in
order 1,2,3,4,5,6,7,8.

  Team 1 plays team 2. The winner earns 1 point
and stays on the court to play the next team in
line; the loser goes to the end of the line.

  After all teams have played once, point values
double for each match.

  The first team to reach 7 points (sometimes 9) is
the winner of the game.

9

A class to model a Jai Alai Team

public class Team {

private int teamNumber;

private int teamScore;

public Team(int number) {

teamNumber = number;

teamScore = 0;

}

public int getTeamNumber() {

return teamNumber;

}

public int getTeamScore() {

return teamScore;

}

10

A class to model a Jai Alai Team
(cont'd)

public void addPoints(int numPoints) {

if (numPoints >= 1) {

teamScore += numPoints;

}

}

public String toString() {

return ("Team " + teamNumber + ": "  

+ teamScore);

}

}

11

Jai Alai:
Initializing the array

final int NUM_TEAMS = 6;

Team[] teamList  

= new Team[NUM_TEAMS+1];

for (int position = 1;  

position <= NUM_TEAMS; position++)

{

teamList[position] = new Team(position);

}

create a new Team with a number
equal to its position in the array

We're not using cell 0
for convenience again

We'll use just 6 teams
here for now.

12

Jai Alai:
Initializing the array

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 0

2

0

3

0

4

0

5

0

6

0

3

13

Jai Alai:
Playing a match

  The teams in the first two positions (positions 1 & 2) play
each other.
  Note: This isn't necessarily Teams 1 & 2, except at the beginning

of the Jai Alai game.

  We wish to store the winner of the match in position 1
and the loser in position 2 of the array.

14

Jai Alai:
Moving the winner into position 1

  If the winner was the team in position 1, we have no
work to do.

  If the winner is the team in position 2:

Team temp = teamList[2];

teamList[2] = teamList[1];

teamList[1] = temp;

This is called
a SWAP.

15

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 0

2

0

3

0

4

0

5

0

6

0

Team temp = teamList[2];

temp

16

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 0

2

0

3

0

4

0

5

0

6

0

teamList[2] = teamList[1];

temp

17

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 0

2

0

3

0

4

0

5

0

6

0

teamList[1] = temp;

temp

18

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 0

2

0

3

0

4

0

5

0

6

0

Actually, the objects never move;
it's the references that change...

4

19

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 2

teamScore 0

1

0

3

0

4

0

5

0

6

0

...but we can untwist
the references to

make it easier to see.

20

Jai Alai:
Moving the loser to the end

  The loser (who must be in position 2 now) must move to
the end of the line.

  We must shift all other teams "forward" one position
(toward the "beginning" of the array) and then reinsert
the loser in the last cell of the array.

21

Jai Alai:
Moving the loser to the end

loser = teamList[2];

// shift waiting teams to the left one position 

for (int position = 3;  

position <= NUM_TEAMS; position++)

{

teamList[position-1] = teamList[position];

}

// insert loser of match at end of waiting line

teamList[NUM_TEAMS] = loser;

22

Jai Alai:
Moving the loser to the end

loser = teamList[2];

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 1

2

0

3

0

4

0

5

0

6

0

loser

We'll assume
team 1 was
the winner

of the match.

23

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)

 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 1

2

0

3

0

4

0

5

0

6

0

loser
 position = 3

24

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)

 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 1

2

0

3

0

4

0

5

0

6

0

loser
 position = 4

5

25

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)

 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 1

2

0

3

0

4

0

5

0

6

0

loser
 position = 5

26

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)

 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 1

2

0

3

0

4

0

5

0

6

0

loser
 position = 6

27

Jai Alai:
Moving the loser to the end

teamList[NUM_TEAMS] = loser;

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 1

2

0

3

0

4

0

5

0

6

0

loser

28

Jai Alai:
Moving the loser to the end

OR (untwist the references):

0 1 2 3 4 5 6
null

teamList

teamNumber 1

teamScore 1

2

0

3

0

4

0

5

0

6

0

Although the references appeared to be moving right,
we're actually shifting objects to the left (with respect to the array).

29

Shifting data in an array

  If you want to shift data values to the "left" one position
(toward the beginning of the array):
  Work from left to right.
  Copy from each position to position-1.

for (int position = 3; position <= 6; position++)

 teamList[position-1] = teamList[position];

  Question: What should you do if you want to shift data to
the "right" one position (toward the end of the array)?

from to

30

What's next...

  Given an array of references to objects:

  Insert a new object reference into the array at various positions
based on some criteria.

  Remove the reference of an object from the array given some
criteria.

  Count the number of objects referenced in the array that match
some criteria.

  Create a new array with object references from the original array
with only those objects that meet some criteria.

