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Temporal Logics

Temporal Logic is widely used for the specification and verification of reactive
systems and hardware designs.

There are (at least) two brands:

e LTL — Linear time logic, using the operators [], <> , U, and interpreted over
individual computations.

e CTL — Branching time logic, using the operators A<> , E[J, and interpreted
over computation (Kripke's) structures.
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The Ever-Lasting Controversy

Since their introduction, there has been a continuous controversy about the relative
merits of these two different brands of TLs.

Following are some of the arguments raised by the proponents of each camp:

Feature

CTL LTL
Expressiveness Capabilities E<> P ] <> » — [ <> q
Complexity of Model Checking | Linear PSPACE-complete

Main method of Verification

Compositional c¢Tr™, CMU, August, 2003
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Demonstrate that cTL is Compositional

Model checking cTL formulas can be viewed as a successive process of statification
— finding for each temporal formula ¢ an assertion ||| which characterizes the set

of all states satisfying .

Compositionality of ¢TL is illustrated by the equation

IAQ AOD p|| = A (1A 2|,

stating that we can break the task of computing ||AC> AL p|| into the subtask of
computing first an assertion ¢ = ||A] p|| and then, computing [|A> ¢].

Indeed, all model checking algorithms for ¢TL are incremental, dealing with one
temporal operator at a time.

In contrast, model checking an LTL formula 1 traditionally starts with
construction of a tableau which tackles the full formula 7). No apparent
compositionality or modularity there.
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Main Message of this Talk

The main message of this talk is that ¢TL* (and therefore LTL) can be made
compositional, but at a price.
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Main Message of this Talk

The main message of this talk is that ¢TL* (and therefore LTL) can be made
compositional, but at a price.

Obviously, there must be a price, otherwise we would have established

PSPACE = P.

Compositional ct’™, CMU, August, 2003 6



Amir Pnueli Compositional cTL™

Fair Discrete Systems

An DS D = (V,0,p, J,C) consists of:

e I/ — A finite set of typed state variables. A V-state s is an interpretation of V.
>y — the set of all V-states.

e ® — An initial condition. A satisfiable assertion that characterizes the initial
states.

e p — A transition relation. An assertion p(V, V'), referring to both unprimed
(current) and primed (next) versions of the state variables. For example,

2’ = x + 1 corresponds to the assignment x := x + 1.

o J ={J1,...,Jr} A set of justice (weak fairness) requirements. Ensure that a
computation has infinitely many J;-states for each J;,, 1 = 1,... k.

o C={(p1,q1),---(Pn,qn)} A set of compassion (strong fairness) requirements.
Infinitely many p;-states imply infinitely many ¢;-states.

An FDS provides a syntactic representation of fair Kripke structures. Note that
every finite Kripke structure or one which is generated by a program or a circuit
has a presentation as an FDS.
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Computations

Let D be an FDS for which the above components have been identified. The state
s" is defined to be a D-successor of state s if

(s,8") = pp(V, V).

We define a computation of D to be an infinite sequence of states

o :S0,51,59, ...,
satisfying the following requirements:

e Initiality: s¢ is initial, i.e., sg = ©.

o Consecution: For each j > 0, the state s, is a D-successor of the state s;.
e Justice: For each J € 7, o contains infinitely many J-positions

e Compassion: For each (p,q) € C, if o contains infinitely many p-positions, it
must also contain infinitely many g-positions.
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Synchronous Parallel Composition

The synchronous parallel composition of systems Dy and D5, denoted by D, ||| Do,
is given by the FDs D = (V. 0, p, J,C), where

Vv = Vi U VW,
© — ©; N O
p = p1 N p2
J = Ji U s
C = Ci U (G

Synchronous parallel composition is used for the construction of an observer: a
system O which observes and evaluates the behavior of an observed system D.
Running D ||| O, we let D behave as usual, while O observes its behavior.
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A Unified Requirement Specification Language:
the Temporal Logic cTL"

Assume an underlying (first-order) assertion language L. The predicate at_/;,
abbreviates the formula 7; = /;, where /; is a location within process P;.

A temporal formula is constructed out of assertions to which we apply the

e Boolean operators —, V, and A,

e [emporal operators:
O — Next U —-Until W — Waiting-for, Unless
® -—Previous S -Since B - Back-to,

e Path quantifiers: E, A, E4, and Ay.
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Derived Temporal Operators

Additional temporal operators can be defined in terms of the basic ones as follows:

Op = 1Up - Eventually

Op = pWO0 - Henceforth

<> p = 18p — Sometimes in the past
Elp = pB0 - Alwaysin the past

Compositional ct’™, CMU, August, 2003 11
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CTL*: Syntax (1/2)
There are two types of sub-formulas in cTL*:

State formulas (interpreted over states):

e Every assertion in L is a state formula.

e |If pis a path formula, then Ep, Ap, E;/p and Ap are state
formulas.

e If p and ¢ are state formulas then so are —p, p V¢, and p A q.

Examples: p and A (p — <> q) are state formulas.

Compositional c¢Tr™, CMU, August, 2003
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CTL*: Syntax (2/2)
Path formulas (interpreted over state sequences):

e Every state formula is a path formula.
e If p and ¢ are path formulas then so are —p, pV g, p Aq, Op, p U q,

pWaq, Op pSq andpBg
Examples: p and I:I<> E<> r are path formulas.

Any state formula is a ¢TL* formula. Path formulas which contain no path
quantifiers are sometimes referred to as LTL formulas.

Compositional ct’™, CMU, August, 2003 13
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In Pictures

[ State-Formulas Path-Formulas

-0.$.0.8.©.0

[ Assertions ]
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Runs, Reachable, and Feasible States

Let D be an FDS. A run of D is an infinite sequence of states o : sg, s1, ...,
satisfying the requirements of initiation and consecution, i.e., so = © and, for
every j > 0, s;11 is a D-successor of s;. We denote by runs(D) the set of runs

of D.

Recall that a computation of D is a run which satisfies the requirements of
justice and compassion.

A state s is said to be reachable if it participates in some run of D. State s is
feasible if it participates in some computation of D.

Compositional ct’™, CMU, August, 2003 15
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CTL*: Semantics

We interpret ¢TL* formulas over (the computation structure of) an FDS D. In
the following, we use the term path as synonymous to a run of an FDs. Let
T :Sg,S1,... bearun of D. Then, for j > 0, we write 7[j] to denote s;, the jth
state In 7.

The semantics of ¢TL* formulas is defined inductively as follows:

Compositional ct’™, CMU, August, 2003 16
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Interpretation of State Formulas

State formulas are interpreted over states in D. We define the notion of a state
formula p holding at a state s in D, denoted (D, s) |= p, as follows:

e For an assertion p,

(D,s) Ep = skEp
e For state formulas p and ¢,
(D, s) = —p <= It is not the case that (D,s) = p

(D,s) EpVg <= (D,s)E=por(D,s)Eq
(D,s) FpANg <= (D,s)Epand (D,s) =g
e For a path formula ¢,
(D,s) =Ep <= (D,m,j) = ¢ for some path 7 € runs(D)
and position j > 0 satisfying 7[j| = s.
(D,s) =Ap <= (D,m,j) = ¢ for all paths m € runs(D)
and positions j > 0 satisfying 7[j] = s.

The semantics of E¢ and A;¢ are defined similarly to E¥ and Ay respectively,
replacing path (run) by computation.

Compositional ct’™, CMU, August, 2003 17
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Interpretation of Path Formulas (1/2)

Path formulas are interpreted over runs of D. We define the notion of a path
formula p holding at a run 7 € runs(D) at position 7 > 0, denoted (D, 7, j) = p,
as follows:

e For a state formula p,

(D,m,j) Ep <= (D,7j]) =p.
e For path formulas p and ¢,

(D,m,7) = —p <= It is not the case that (D, 7,j) E=1p

(D,m,j) EpVe <<= (D,mj)Epor(D,mj)Eq

(D,m,j) EpNg < (D,mj)Epand (D,7,j)FEq

(D,mj)EQp = [Dmj+1)Ep

(D,7,5) =EpUq <= (D,n, k)= q for some k > j, and (D, 7,1) = p for

all 7, 1 <1<k
(D,m,j) EpWq <= (D,m,j)E=pUq,or (D,m,i)=pforalli>j

Compositional ct’™, CMU, August, 2003 18



Amir Pnueli Compositional cTL™

Interpretation of Path Formulas (2/2)

e For path formulas p and g,
(D, 7, j) F @p
(D,7.5) F @p
(D,7,j) EpSq

j>0and (D,m,j—1)Fp

j:OOF (D77T7j_1> |:p

(D, 7, k) |= q for some k < j, and (D, 7, i) = p
forall 7, k<1<

(D,7,5) Ep S q, or (D,m,1) = p for all 1,
0<:<y

I 111

(D,7,7) EpBgq

Let ¥ be a ¢TL* formula. We say that ¢ holds on D (¢ is D-valid), denoted
D = o, if (D,s) = v, for every initial state s in D. A ¢TL* formula ¢ is called
satisfiable if it holds on some model. A cTL* formula is called valid if it holds on
all models.

Let p and ¢ be ¢TL* formulas. We introduce the abbreviation
p=q for AO (p —q).

where p —q is the logical implication equivalent to =p V ¢. Thus, the formula
p = q holds at D if the implication p —¢ holds at all reachable states.

Compositional ct’™, CMU, August, 2003 19
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Fragments of cTL*

e CTL — Path quantifiers and temporal operators always appear in the combination
QT, where O is a path quantifier and 7 is a temporal operator.

e LTL — Formulas of the form Ay, where ¢ is a path formula.

e ACTL — CTL”* formulas where the only path quantifiers used are A and A;.

Compositional ct’™, CMU, August, 2003 20
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Temporal Testers

For every LTL formula ¢, there exists an FDs Ty called the temporal tester for
@. This tester has a distinguished boolean variable x, such that, in every o, a

computation of T and every position 7 > 0, z|s;| = 1 iff (0,7) = ¢.

A path formula whose principal operator is temporal, and such that it does not
contain any nested temporal operator or path quantifier is called a basic path

formula.

We will only present testers for basic path formulas.

Compositional ct’™, CMU, August, 2003 21
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Example: a Tester for & p

O: 1
TOp):] pi o
J: pV —x

C: 0

\

([ V: Vars(p) U {z}

p VvV x

Compositional cTL™

The justice requirement demands that either p = 1 infinitely many times, or x = 0
infinitely many times. This rules out a computation in which p =0 and z =1
continuously, even though such a state sequence satisfies the requirements of

initiality and consecution.

Compositional c¢Tr™, CMU, August, 2003
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Testers for Op and p U ¢

( V. Vars(p) U {zx}
O: 1
T
(Op) : « R
 J=C: 0
(Vi Vars(p,q) U {z}
O: 1
TlpUqg):q p: = = gV (p A2
J: qV x
C: 0

Note the justice requirement by which either ¢ or x = 0 should hold infinitely many
times.

Compositional ct’™, CMU, August, 2003 23
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Model Checking cTL* Formulas

A state formula whose principal operators are a pair 97 and which does not
contain any additional temporal operators or path quantifiers is called a basic ¢TL

formula (|Q| = |T| = 1).

A path formula whose principal operator is temporal, and such that it does not
contain any nested temporal operators or path quantifiers is called a basic path

formula (|Q| =0,|7| =1).

A basic state formula is a formula of the form Oy, where ¢ contains no path
quantifiers (|Q| = 1).

Compositional ct’™, CMU, August, 2003 24
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Statification

For a state formula ¢, we denote by ||¢|| the assertion characterizing the set of all
D-states satisfying ©. For the case that ¢ is an assertion, ||¢| = .

Claim 1. [Model Checking State Formulas]
For a state formula o,

DE=ye iff ©— .

Thus, the essence of model checking is the computation of ||¢|| for the various state
formulas. We will provide a recipe for effective computation of the statification of
all state formulas.

To shorten the presentation, we assume that we already know how to compute
||| for all basic ¢TL formulas ¢. This is what every model checker does.

Compositional ct’™, CMU, August, 2003 25
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Model Checking General Future cTL Formulas

Let f(¢) be a state formula containing one or more occurrences of the nested
state formula ¢, and let ¢ = [|¢||.

Claim 2. [Elimination of nested state formulas]

LFe)l = 1lfe)

where f(q) is obtained by substituting q for all occurrences of ¥ in f.

7

Consider a general future ¢TL formula. Claim 2 enables us to eliminate all nested
state formulas, starting with the innermost ones, successively applying the known
techniques for statification of basic ¢TL formulas.

The statement of Claim 2 can also be phrased as:

L@ = llFeDI

Compositional ct’™, CMU, August, 2003 26
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Try to model check the formula f = A<> ALl p. Following Claim 2, we compute

_ 2
first

e[l = [[AO pl| = (7 = 2).
Next, we compute

1£(leDIf = 1A (r = 2)[| = (7 > 0).
Now, it remains to check

O—|fll = (x=0Ap - #>0) = 0,
which shows that A<>A|:I p does not hold on D.

Compositional ct’™, CMU, August, 2003 27
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Elimination of Temporal Operators

The modularity of ¢TL which enabled us to model check a formula by successively
computing ||| for a sequence of nested basic cTL formulas has, for a long time,
been considered a unique feature of CTL, and a major argument in the branching
vs. linear battle.

A similar modularity (though for a higher price) exists for the LTL component of a
general cTL* formula, as shown by the following:

Claim 3. [Elimination of Temporal Operators]

Let f(1)) be a basic state formula containing one or more occurrences of the basic
path formula 1. Then, we can compute

IF@lo = (IF@loyr,) Yy

where T’y Is the temporal tester for 1), x is the fresh variable introduced by T,
and ||, is a projection operator which removes from an assertion (by existential
quantification) all the variables not in V. The expression || f(x)|pr, stands for
the statification of f(x) computed over the augmented ¥DS D ||| 1.

Compositional c¢Tr™, CMU, August, 2003 28
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Example 1/2

Consider the system

We wish to model check the property Af<>|:| p. First, we construct the tester

(V=0 {pax} (_— .
O: 1 pe
Tap : 1 p: ©x = p AN //
-

The justice requirement = V —p is intended to guarantee that we will not have a
computation in which continuously p = 1, while x = 0.

Compositional c¢Tr™, CMU, August, 2003 29
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Next, we form the parallel composition D : D ||| Tq,.

D+I

Example 2/2

0:px

0:px

Compositional cTL™

Evaluating ||A ;<> z|| over D, we obtain [[A;> z|| = 1. We can therefore

conclude that the original ¥FDs D satisfies Af<>|:| P.

Compositional c¢Tr™, CMU, August, 2003
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Deductive Verification

Based on theorem proving techniques, the method of deductive verification can be
used to establish temporal properties of infinite-state reactive systems.

We assume that all ¢TL* formulas are given in a positive normal form, i.e.,
negations are only applied to assertions.

For simplicity of the presentation, we consider systems with no compassion
requirements.

Compositional c¢Tr™, CMU, August, 2003 31
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Structure of the Proof System

The structure of the deductive system we present is as follows:

e Rules for each of the basic ¢TL formulas, i.e. formulas of the form Q7 p where
p IS an assertion.

e A reduction rule which enables us to decompose the verification task into several
subtasks, each dealing with a single basic state formula. Recall that a basic
state formula is a formula of the form Oy, where ¢ contains no path quantifiers.

e A reduction rule which enables us to eliminate one basic path formula at a
time, at the cost of conjoining a tester for that formula to the system we are
verifying. Recall that a basic path formula is a formula of the form 7 p, where
T is a temporal operator and p is an assertion.

Compositional c¢Tr™, CMU, August, 2003 32
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Preliminary Rules

We assume the availability of an underlying proof system for assertional reasoning.
Following is the Generalization rule,

For an assertion p,
FFo D
— A p

stating that an assertion that has been proved to be generally valid holds, in
particular, on any reachable state.

The following Entailment Modus Ponens rule enables us to perform propositional

reasoning uniformly at all reachable states. Recall that p = ¢ is an abbreviation
for A (p — q).

For state formulas p and ¢,
AQlp, p =4

ALl q

Compositional c¢Tr™, CMU, August, 2003 33
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Universal Invariance

The following rule A-INV can be used to prove that if assertion p holds at state s,
then ¢ holds at all states reachable from s.

For assertions p, ¢, and o,
1. p = @
2. © = q
13. © N p = ¢
p = Alq

The auxiliary assertion ¢ is often described as an inductive strengthening of ¢g. The
rule itself is based on computational induction.

Finding © and similar auxiliary constructs is one of the most challenging problems
in the application of deductive verification, and requires ingenuity and insight.
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Example: MUX-SEM

y: natural initially y =1

[ /o : loop forever do |  mg: loop forever do |
[ /1 : Non-critical | " my: Non-critical |
{5 : request y [ mo : request y
¢3 : Critical ms : Critical
| £y release y ] | my: release y ]

Wishing to establish mutual exclusion, we use rule A-INV to prove
®© = AO —(at_l3 N at_ms3)

As the inductive assertion © we choose:
—(at_l34 N at_ms4) N (at_ls s —y=0) A (at_m34— y=0)

Note that the last two conjuncts form assertions attached at the locations
63,64,7723,777/4.
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Following is rule E-NEXT:

Rule E-NEXT

For assertions p and ¢
NI. p = dV':p A ¢

p = EQq

Compositional cTL™

This rule can be used to establish that every p-state has a successor satisfying ¢

Compositional c¢Tr™, CMU, August, 2003
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Rule E-UNTIL

Following is rule E-UNTIL:

For assertions p, g, 7, and ¢
a well-founded domain (A, ),
and a ranking function 6 : ¥ — A

Ul. p = ¢
U2. ¢ =71V (gAN3IV:i(p AN A=)
p = qEUTr

The rule uses a well-founded domain (A, ), consisting of a set A and an
order relation >, such that there does not exist an infinitely descending chain of
A-elements:

apgp >~ a1 > as > -

The rule also uses a ranking function 0 mapping states of the system into the well
founded domain A.

Compositional c¢Tr™, CMU, August, 2003 37
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Example: BAKERY-2
local ¥i,y2 :mnatural initially y; =y, =0

/o : loop forever do i o : loop forever do
: Non-Critical my : Non-Critical
Yy =y + 1 ma :y2 =y +1
cawait |72~ OV | ms :await =0V
Y1 < Y2 Y2 < Y1
: Critical my : Critical
g1 =10 msg Y2 =0 |

We prove, using rule E-UNTIL the property © = (1 EU at_{,), claiming that it is
possible for process P; to get to the critical section, starting at the initial state.
We choose as follows:

s IR

ek

©

1

at_€4

at_fo,,4 A at_mo A Yo =0
(N, >)

4 — num(7r1)

where num(m) is the function which yields the natural j if 74 = /;.

Compositional c¢Tr™, CMU, August, 2003
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Rule E-INV

For assertions p, ©g, ..., %,
an FDS whose justice requirements are Jy,...,J,, € 7,
and taking Jy = 1.

1. p = \7@@
1=0

For:=20,...,m,
2. v, = J;
3. v, = ¢ AN EQ(qEUpip, 1)
p = EsOq

For i <m, 1® 1 =14+ 1, while m®,_ 1 = 0. The rule requires identifying
auxiliary assertions ¢g,...,¢,,, such that each ¢, implies J;, and there exists a
computation which visits ¢, ..., ¥,, in a round-robin fashion.

Compositional c¢Tr™, CMU, August, 2003 39
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Universal Response

Compositional cTL™

For justice requirements Jy, ..., J,,

assertions p,q,h1, ...y,
well-founded domain (A, >),
and ranking functions 0,...,0m: 20— A

W1. »p iq\/\?hj

j=1
W2, Fori=1,....m
hi N p = ¢ VvV (=J] N Kl N § =0

j=1

Compositional c¢Tr™, CMU, August, 2003

40



Amir Pnueli Compositional cTL™

Example: BAKERY-2
local ¥i,y2 :mnatural initially y; =y, =0

/o : loop forever do i o : loop forever do |
¢1 : Non-Ceritical m1 : Non-Clritical
by :y1 :=y2 +1 ma iy =y + 1
/3 :await y2 =0V | ms :await =0V
1 < Y2 Y2 < Y1
¢4 : Critical my : Critical
U5 :y1:=0 M5 y2 =0 |

We prove, using rule A-RESP the property at_ /9 = Af<> at_ly. We choose
p=at_ty, q=at_ty, (A >)=(IN,>), and

1 ﬁ(at_fg A (y2 =0V y1 < y2>) —Jq 1
2 | mat_ms at_lz N at_msg | 2
3| nat_my at_ls N at_my | 3
41 =(at_ms N (11 =0V yo <wyq)) | at_Lls N —Jy 4
5 ﬁat_ég at_fg 5

Compositional c¢Tr™, CMU, August, 2003 41
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Verification Diagrams

An A-RESP proof can also be presented in a verification diagram.

[ hs : at_{5 }
2
[ at_l; N y1 >0 |

[ hg:at_ms N y2 < yp 1

[ J
! hs : at_my )
. I )
! ho : at_ms )
¢ I )
[ hi:iya =0V y1 <o }

L3

q:at_ty

Compositional c¢Tr™, CMU, August, 2003 42
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Decomposing a Proof into Proofs of
Basic State Formulas

Compositional cTL™

Recall that a basic state formula is a formula of the form Oy, where © contains

no path quantifiers.

The following rule BASIC-STATE allows us to decompose a proof of an arbitrary

state formula into proofs of basic state formulas:

For a formula f(¢), containing occurrences of
the basic state formula ¢, and an assertion p,

RlI. p= o
R2. f(p)
f(p)

Compositional c¢Tr™, CMU, August, 2003
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Example

) 2

We wish to prove for this system the property f : E[] E<> (x = 1), claiming the
existence of a run from each of whose states it is possible to reach a state at which
r = 1.

Using BASIC-STATE, it is possible to reduce the task of verifying the non-basic
formula EO0 EC) (z = 1) into the two tasks of verifying

R1. (z=0)=EO (z=1)
R2. EC] (2 = 0)

Note that, as the assertion p, we have chosen = = (0. The design of an appropriate
assertion p which characterizes states satisfying ¢ is the part which requires
creativity and ingenuity in the application of BASIC-STATE.
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Eliminating Basic Path Formulas

Recall that a basic path formula is a path formula whose principal operator is
temporal and which does not contain any additional temporal operators or path

quantifiers.

The following rule BASIC-PATH enables to eliminate basic path formulas from a
bigger formula:

For a fair basic state formula f(y), containing
occurrences of the basic path formula ¢, and

an FDS D,
DI Ty = [flzy)
D = flp)

where ., is the fresh variable introduced by the tester 7.

Compositional c¢Tr™, CMU, August, 2003 45
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Example 1/2

Consider the system

We wish to verify D = Af<>|:| p. First, we construct the tester T,

Vi Ap,z; Ej =

0. 1 b
Tap:§4 p: © = pANx //
7 Pz

O

o (= J—

The justice requirement = V —p is intended to guarantee that we will not have a
computation in which continuously p = 1, while x = 0.
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Example 2/2

Next, we form the parallel composition D : D ||| Tq,.

o~ 0:px 1:pxjf——=2:px
D+. hﬁ\rﬁ
e~(0: px 1:px 2:px

We need to verify D, = Af<> x. The rule for Universal Response is adequate
for proving D, = (7 = 0) = A;{> z. We can therefore conclude that the original
rDs D satisfies A OO p.
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Re-Completing the Temporal Picture
In a paper

IMP91] — Z. Manna and Pnueli, Completing the Temporal Picture.

and the two books with Zohar, we presented a complete proof theory for LTL. The
theory included few select rules for the properties of invariance ([ p), response

(p = <> ), and reactivity (0 O p = O <> ¢). The claim for completeness was
based on the presentation of every temporal formula in a canonic form which is a

conjunction of reactivity properties, where p and ¢ are arbitrary past formulas.

The results reported here present an even more complete picture, where we
showed that the theory can be extended to full ¢TL* and completeness can be
based on the two reduction principles which successively eliminate basic state
formulas and basic path formulas.
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Conclusions

e CTL™ can be verified in a compositional manner, based on the following reduction
principles:

m Decomposing the proof into proofs of basic state formulas — getting rid of
one path quantifier at a time.

= Elimination of basic path formulas at the price of introducing a tester for the
formula — getting rid of one temporal operator at a time.

e We presented a novel (relatively) complete deductive system for cTL*.

e Proposed a new (tester-based) and more effective answer to the old question
“how to verify an arbitrary LTL formula?”

e Technically, the work presents a modular tableau construction.
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