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Multi-agent systems…

•Examples 
Automated Highway Systems
Formation Flight
MEM arrays/Smart structures
Biochemical networks
Satellite clusters

•Application areas
Auto/Aerospace industry
Molecular Biology
Telecommunications

•Significance
key technologies
social impact
intellectual challenge



Multiple UAVs
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Physical system is continuous, software is discrete
Agents are synchronized but only partially

Concurrent continuous systems…
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Specification challenges

Continuous model

Agents can exchange data if the they are physically close, say 

Hybrid specification
Move freely within a specified region S 

Avoid collisions with each other, say

Exchange data (no later than) every 60 time units

(t)uB(t)xA1)(tx 11111 +=+

|x1 à x2| ô 50

|x1 àx2| õ 5

(t)uB(t)xA1)(tx 22222 +=+
(t)uB(t)xA1)(tx 33333 +=+



Specification challenges

Continuous model

Agents can exchange data if the they are physically close, say 

Linear temporal logic (LTL) specification
Move freely but always within a specified region S 

Avoid collisions with each other, say

Exchange data (no later than) every 60 time units

|x1 à x2| ô 50

|x1 àx2| õ 5
ϕ1 := (x1 ∈ S∧ x2 ∈ S∧ x3 ∈ S)

ϕ2 := (|x1 àx2| õ 5 ∧ |x1 àx3| õ 5 ∧ |x2 àx3| õ 5)

ϕ3 := (♦60|x1 àx2| ô 50 ∧♦60|x1 àx3| ô 50 ∧♦60|x2 àx3| ô 50)

ϕ = ϕ1 ∧ϕ2 ∧ϕ3

(t)uB(t)xA1)(tx 11111 +=+
(t)uB(t)xA1)(tx 22222 +=+
(t)uB(t)xA1)(tx 33333 +=+



A verification problem

Basic verification problemBasic verification problem

S |=ϕ

Given dynamical system S, and temporal logic formula  ϕ

Two main approaches

Model checking : Algorithmic, restrictive
Deductive methods : Semi-automated, general 



A synthesis problem

Basic synthesis problemBasic synthesis problem

S k C |=ϕ

Given control system S, and temporal formula  ϕ

Controller is necessarily a hybrid system...

Composition semantics can be defined...



Symbolic transition systems
Emphasis on region algebras and finite bisimulations

Temporal logic verification of linear dynamical systems
Emphasis on finite bisimulations using order-minimality

Temporal logic synthesis of linear control systems
Emphasis on finite bisimulations using Brunovsky canonical forms

Technical outline



Symbolic transition systems*
A symbolic transition system  

consists of 

A (in)finite set of states    Q Finite sets, reals
A (in)finite set of regions    R BDDs, polyhedra
A finite set of observables  
The transition function Possibly nondeterministic
The extension function

Symbolic transition systems are equipped with a region algebra of sets

[ ])  P, R,δ,Q, (S ⋅=

*T.A. Henzinger, R. Majumdar, J.F. Raskin, A classification of symbolic transition systems,  ACM Transactions on Computational Logic, June 2003.

RP ⊂
Q2  Q : δ →

[] Q2  R : →⋅



Symbolic transition systems
Set of observables covers the state space 

For every observable p, there is a complementary observable  

For regions s and t in R, there are computable regions for 

Emptiness Empty(s) and membership Member(q,s) can be decided

Q p
Pp

=〉〈
∈
U

p

[ ] [ ] [ ] ts t)And(s, I =

[ ] [ ] [ ] t\s t)Diff(s, =

[ ] { }sq'δ(q)q'|Qq Pre(s) ∈∧∈∃∈=

Empty)Diff,And,Pre,(P,R  Algebra Region S =



A continuous example

1T

nR  Q =

sets linear-Semi    R =

Axx'      δ(x)x' =⇔∈

S  System Transition Symbolic
[ ])  P, R,δ,Q, (S ⋅=

Ax(t)1)x(t =+ UU P)}X(X\R,X,{XP F0
n

F0=

Empty)Diff,And,Pre,(P,R  algebra  Region S =

{ }s reach that states Pre(s) =
f00 XXX :φ ◊⇒∧=



Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions 
All observation symbols p are formulas

Boolean operators
If       and        are formulas then  

Temporal operators
If       and         are formulas then

Linear temporal logic

ϕ1 ϕ2

ϕ1 ϕ2

ϕ1 ∨ ϕ2 ¬ϕ1

ϕ1 U ϕ2 íϕ1



Syntactic boolean abbreviations

Conjunction
Implication
Equivalence

Syntactic temporal abbreviations

Eventually
Always
In 3 steps 
Within 3 steps  

Linear temporal logic

♦ ϕ = > U ϕ
ϕ = ¬♦ ¬ϕ

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

í3 ϕ = íííϕ

♦3 ϕ =
W

i=0

3 íi ϕ



Comparing logics

LTLCTL

CTL*

Mu-calculus



Mu-calculus model checking
ModelModel--checking semichecking semi--algorithmalgorithm
Input

Output              [ϕ] :=

If ϕ = p return {p}

RS = (P, Pre, And, Diff, Empty), ö à formula ϕ

{And(s, t) | s ∈ [ϕ1] , t ∈ [ϕ2]}

If ϕ = p return {Diff(q, p) | p ∈ P}
If ϕ = ϕ1 ∨ ϕ2 return [ϕ1] ∪ [ϕ2]

If ϕ = ϕ1 ∧ ϕ2 return

If ϕ = ∃íψ return {Pre(s) | s ∈ [ψ]}
If ϕ = ∀íψ return P \\{Pre(s) | s ∈ (P\\[ψ])}
If ϕ = (öx : ψ) return . . .

If ϕ = (÷x : ψ) return . . .



State equivalence

Given a state equivalence      on the state space we define the

Quotient transition system

where

[ ] ) / P, R,,δ/,Q/ (  S/ ≅⋅≅≅=≅

classes eequivalenc of set the is   Q/ ≅

≅

δ(q)q' that such sq and tq' exist there if  (s)δ/t ∈∈∈≅∈

[ ] [ ]pq that such  sq  exists there if  /ps ∈∈≅∈



Bisimulation equivalence
Bisimulation is a special state equivalence

State equivalence      is a bisimulation iff the following conditions
hold for any two equivalent states q    r

≅

[ ] [ ]pr  iff  pq  P,p observable every For ∈∈∈

≅

r'q'   and  δ(r)r'  is there  δ(q)q'  every For ≅∈∈

r'q'   and  δ(q)q'  is there  δ(r)r'  every For ≅∈∈

p p'
q

r

q'
r'



Algorithm terminates if no new regions are generated
If S is infinite, there is no guarantee of termination

Bisimulation algorithm

BisimulationBisimulation semisemi--algorithmalgorithm
Input
Initialize    
while    

end while

[Ti+1] ò [Ti]

Ti+1 := Ti∪ {Pre(s) | s ∈ Ti}

RS = (P, Pre, And, Diff, Empty)

T0 := P

∪ {And(s, t) | s, t ∈ Ti}
∪ {Diff(s, t) | s, t ∈ Ti}



Preserved properties

mumu--calculus (also CTL and LTL) equivalencecalculus (also CTL and LTL) equivalence

S |=ϕ ⇔ S/=ø |=ϕ

Decidable Decidable mumu--calculus model checkingcalculus model checking

If       is a finite bisimulation, then the model checking algorithm terminates≅

If       is a bisimulation, then≅



≅≡S/S

≅S/

Infinite to finite

Dynamical Systems

Restricted dynamical systems
Semi-algebraic region algebra

≅S/

Control Systems

Linear control systems
Restricted region algebra

S S
Ax

dt
dx

= Bu(t)Ax(t)1)x(t +=+

≅≡S/S



Symbolic transition systems
Emphasis on region algebras and finite bisimulations

Temporal logic verification of linear dynamical systems
Emphasis on finite bisimulations using order-minimality

Temporal logic synthesis of linear control systems
Emphasis on finite bisimulations using Brunovsky canonical forms

Technical outline



Continuous verification

1T

nR  Q =

sets algebraic-Semi    R =

xex'  with   0t  δ(x)x' At=≥∃⇔∈

S  System Transition Symbolic
[ ])  P, R,δ,Q, (S ⋅=

Ax
dt
dx

=
)}XX(\R,X,{XP F0

n
F0 U=

? algebra  region  a  Empty)Diff,And,Pre,(P,R   Is S =

[ ] { }sx'δ(x)x'|Rx Pre(s) n ∈∧∈∃∈=



Closure under Pre

Consider linear vector fields of the form F(x)=Ax where

A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Let S be any semi-algebraic set.  Then Pre(S) is also semi-algebraic*.

Under such assumptions on A

is a region algebra 
Empty)Diff,And,Pre,(P,RS =

*G. Lafferriere, G.J. Pappas, S. Yovine, Symbolic reachability computations for families of linear vector fields,  Journal of Symbolic Computation,  2001.



Finite bisimulation ?

Bisimulation algorithm 
never terminates    !!

4}x0|{(x,0)P1 ≤≤=

0}x-4|{(x,0)P2 <≤=

)P(P\RP 21
2

3 ∪=

Sets Sets 

211
.

x0.2xx +=

Dynamics Dynamics 

212
.

0.2x-xx +=



First-order logic
Every theory of the reals has an associated language

(<,<,+ ,à ,0,1)

Universe Relation Functions Constants

x1, x2, x3, . . .Variables :

TERMS :  Variables, constants, or functions of them

ATOMIC FORMULAS : Apply the relation and equality to the terms

(FIRST ORDER) FORMULAS :  Atomic formulas are formulas
If          are formulas, then  ϕ1,ϕ2 ϕ1 ∨ϕ2,¬ϕ1,∀x.ϕ1,∃x.ϕ1

x1àx2 +1,1+1,àx3

x1 +x2 <à1,2x1 = 1, x1 = x3



First-order logic

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

∃x.ax2 +bx+c = 0

∃t.(t õ 0)∧ (y = etx)

∀x∀y(x+2y õ 0)

A theory of the reals is decidabledecidable if there is an algorithm which in 
a finite number of steps will decide whether a formula is true or not

A theory of the reals admits quantifier eliminationquantifier elimination if there is an 
algorithm which will eliminate all quantified variables.

∃x.ax2 +bx+c =0 ñ b2à4ac õ 0



First-order logic

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

Decidable ? Quant. Elim. ?

YES

YES

YES

YES

NO?

Theory

Tarski’s Tarski’s result : result : Every formula in                               can be decided
1. Eliminate quantified variables
2.Quantifier free formulas can be decided

(<,<,+,à,â,0,1)



A definable set is

A theory of the reals is called oo--minimalminimal if every
definable subset of the reals is a finite union of
points and intervals

Example:                                    for polynomial p(x)
Recent o-minimal theories

O-Minimal Theories
Y = {(x1, x2, . . ., xn) ∈ <n | ϕ(x1, . . ., xn)}

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)

(<,<,+,à,â, ex,0,1)

(<,<,+ ,à ,â , fê,0,1)

(<,<,+,à,â, fê, ex,0,1)

Y = {(x) ∈ < | p(x)õ 0}

Related to Hilbert’s 16th problem



Finite bisimulations

Finite Finite bisimulations bisimulations of dynamical systems* of dynamical systems* 
Consider a vector field X and a finite partition of  where  

1. The flow of the vector field is definable in an o-minimal theory
2. The finite partition is definable in the same o-minimal theory

Then a finite bisimulation always exists.

nR

*G. Lafferriere, G.J. Pappas, and S. Sastry, O-minimal hybrid systems,  Mathematics of Control, Signals and Systems, March 2000.



Corollaries

Consider continuous systems where
Finite partition is polyhedral (semi-linear)
Vector fields have linear flows (timed, multi-rate)

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is semialgebraic
Vector fields have polynomial flows

Then a finite bisimulation exists.

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)



Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real eigenvalues

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is sub-analytic
Vector fields are linear with purely imaginary eigenvalues

Then a finite bisimulation exists.

(<,<,+,à,â, ex,0,1)

(<,<,+ ,à ,â , fê,0,1)



Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real or imginary eigenvalues

Then a finite bisimulation exists.

(<,<,+,à,â, fê, ex,0,1)

xx

x

x

x x

Conditions are sufficient but tight



Model checking continuous systems

Consider linear vector fields of the form F(x)=Ax where

A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then 

1. Consider a finite semi-algebraic partition of the state space.
Then a finite bisimulation always, exists and can be computed.

2. Consider an LTL formula where atomic propositions denote
semi-algebraic sets. Then LTL model checking is decidable.

3. 3. The reachability problem between semi-algebraic sets is decidable.



Symbolic transition systems
Emphasis on region algebras and finite bisimulations

Temporal logic verification of linear dynamical systems
Emphasis on finite bisimulations using order-minimality

Temporal logic synthesis of linear control systems
Emphasis on finite bisimulations using Brunovsky canonical forms

Technical outline



Control abstract transitions

1T
∆

Bu(t)Ax(t)1)x(t +=+

nR Q  set State =[ ])  P, R,δ,Q, (S ⋅=

sets linear-Semi    R =

BuAxx'  with   u  δ(x)x' +=∃⇔∈

S  System Transition Symbolic

1p

2p

3p 0bxa ii <+

Observables are atomic propositions of temporal logic formulas

Empty)Diff,And,Pre,(P,RS =



Termination?

Termination escapes us…probably undecidable

If the region algebra in addition satisfies

then a finite bisimulation exists and can be computed

We will search for a sub-algebra of semi-linear sets 

Pre(A ∩ B) = Pre(A) ∩ Pre(B)

Pre(A) = Pre(A)

∃k õ 0 Prek(A) = <n



Controllability
Assume the linear system is completely controllable

Then by definition

and since the system is controllable

Controllability of linear systems can be decided using rank conditions 

x(t + 1) = Ax(t) +Bu(t)

Pre(Y) = {x ∈ <n | ∃y ∈ Y ∃u y = Ax +Bu}

∃k ô n Prek(Y) = <n

rank[B AB A2B ... Anà1B] = n



Searching for a sub-algebra

Another attempt  : Rectangular sets but in Brunovsky coordinates
Boolean algebra generated by sets of the form

yi ø ci ci ∈ Q, ø∈ {>,=,<}

For any completely controllable linear system, there exist invertible linear 
transformations     and    , and a feedback such that the resulting 
system is in Brunovsky normal form.

F GH

y1(t + 1) = y2(t)
y2(t + 1) = y3(t)
y3(t + 1) = v1(t)

 = k1

y4(t + 1) = y5(t)
y5(t + 1) = v2(t)

û
= k2

x(t + 1) = Ax(t) +Bu(t)

y
v

ô õ
= U x

u

ô õOriginal coordinates Brunovsky coordinates

U = F 0nâm

G H

ô õ



Brunovsky boolean algebra

y1(t + 1) = y2(t)
y2(t + 1) = y3(t)
y3(t + 1) = v1(t)

 = k1

y4(t + 1) = y5(t)
y5(t + 1) = v2(t)

û
= k2

x(t + 1) = Ax(t) +Bu(t)

y
v

ô õ
= U x

u

ô õOriginal coordinates Brunovsky coordinates

U = F 0nâm

G H

ô õ

Fà1y = x

Fx = y



Brunovsky boolean algebra
Brunovksy Boolean Algebra Algebra in Brunovsky coordinates

Fà1y = x

Fx = y

y = Fx

x = Fà1y

wTyi ø ci ci ∈ Q, ø∈ {>,=,<}

w ∈ è 1
0...
0


 , æ

0
1...
0


 , ...,æ 0

0...
1


}

fTx ø ci ci ∈ Q, ø∈ {>,=,<}

fT ∈ rows(F)

Subalgebra of semi-linear sets Rectangular sets in y coordinates



Properties

Consider a discrete-time controllable linear system in
Brunovsky normal form.  Let A,B be any sets in the
Brunovksy boolean algebra.  Then Pre(A) belongs in the 
Brunovsky boolean algebra*.  Furthermore

Therefore the Brunovsky boolean algebra 

is a region algebra. 
Empty)Diff,And,Pre,(P,RS =

*P. Tabuada, and  G.J. Pappas, Finite bisimulations of controllable linear systems,  IEEE Conference on Decision and Control,  2003.

Pre(A ∩ B) = Pre(A) ∩ Pre(B)

Pre(A) = Pre(A)



Temporal logic synthesis

Consider discrete-time controllable systems x(t+1)=Ax(t)+Bu(t) 
Then* 

1. Consider a finite partition of the state space where definable 
in the Brunovsky boolean algebra. Then a finite bisimulation 
always exists and can be computed.

2. Consider an LTL formula where atomic propositions denote
sets in the Brunovsky boolean algebra.  Then LTL controller 
synthesis is decidable.

*P. Tabuada, and  G.J. Pappas, Finite bisimulations of controllable linear systems,  IEEE Conference on Decision and Control,  2003.



LTL controller synthesis

SC = Sϕ k S/=øSϕ

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

S/=ø

S



Set representation

“Cheap” operations (linear in the 
number of variables):

• Intersection of 2 clauses
• Check emptiness of a clause
• Computing Pre
• Checking inclusion of 2 
clauses

Set Representation in DNF

Each clause is represented with “Interval”
matrices (IM)

i.e. S = {x in R2: (-1 ≤ x1 < 1/2 ^ x2 < 2) (x2 ≥ 2)} 

















≤<−
<<
<−<
<≤−

2inf
infinf
inf2/1
21

x1 x2

“Expensive” operations:
• Complementation of a 
formula in DNF
• Intersection of DNF 
formulas

Try to avoid non-convex sets in the 
specifications



Closed loop system in Simulink

D/A

Continuous 
System

Software – A/D



Stateflow logic

Input Constraints:
State = 1

u ∈ R
State = 2

|u| < 1/2
State = 3

|u| < 1/2 
State = 4

|u| < 1/2
State = 5

u ∈ R
State = 6

u ∈ R

Input Constraints:
State = 1

u ∈ R
State = 2

|u| < 1/2
State = 3

|u| < 1/2 
State = 4

|u| < 1/2
State = 5

u ∈ R
State = 6

u ∈ R

D/A



Future challenges
Control on the fly…

Exploit parallel predicates 

Get as close to the semi-linear sets as possible

Include input constraints and environmental disturbances

Include hybrid and switching dynamics

Discretize in time while preserving temporal logic formulas

Compositional controller synthesis
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