
Abstractions of Data Types

Ferucio Laurenţiu Ţiplea

Faculty of Computer Science

“Al.I.Cuza” University of Iasi

6600 Iasi, Romania

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 1/42

http://prosper.sourceforge.net/

Aim

Investigate three types of abstractions in the context of (abstract)
data types, and provide preservations results that generalize
preservation results known from:

Shape analysis
Predicate abstraction
McMillan’s approach
Duplicating predicate symbols technique
etc.

Investigate equationally defined abstractions in the context of
(abstract) data types.

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 2/42

Framework

Abstract data types modeled by universal algebras

1. J. Mitchell. Foundations of Programming Languages, The MIT Press,
1996.

2. J. Loecks, H.-D. Ehrich, M. Wolf. Algebraic Specification of Abstract Data
Types, in Handbook of Logic in Computer Science, vol 5,
Clarendon Press, 2000, 217–316.

3. H. Ehrig, D. Mahr. Fundamentals of Algebraic Specification 1: Equations

and Initial Semantics, Springer-Verlag, 1985.

4. H. Ehrig, D. Mahr. Fundamentals of Algebraic Specification 2: Module

Specifications and Constraints, Springer-Verlag, 1990.

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 3/42

Terminology

Data types modeled by universal algebras. Why?
mathematical precision
independence of implementation
axiomatic definition of operations
suitable to reason about operations and their properties

Abstract data types modeled by classes of universal algebras
closed under isomorphism. Why?

the closer under isomorphism corresponds to the similarity
concept

Specifications given by sets of equations

Model = data type (algebra) which satisfies a specification

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 4/42

A Motivating Example

Data type

N

Predicates

=

Isgrz

+

Data Operations

1

2

3
0

89

Figure: A data type A = (N, +A) together with a set of predicates

The following property holds true:

(∀x, y ∈ A)(IsgrzA(x) ∨ IsgrzA(y) ⇒ IsgrzA(x +A y))

|Spec1〉

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 5/42

A Motivating Example (cont’d)

Predicates

=

Isgrz

+

Data Operations

Quotient data type

3

891

2
0

[0] [1]

Figure: The quotient data type A/ρ = (N/ρ, +A/ρ) together with a set of predicates

Let IsgrzA/ρ be the interpretation of Isgrz in A/ρ given by

IsgrzA/ρ([a]ρ) iff (∀a′ ∈ [a]ρ)(IsgrzA(a′))

The following property holds true:

(∀x, y ∈ A/ρ)(IsgrzA/ρ(x) ∨ IsgrzA/ρ(y) ⇒ IsgrzA/ρ(x +A/ρ y))

|Spec2〉

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 6/42

A Motivating Example (cont’d)

Conclusions:

(1) the meta-language used to express properties of data types
(algebras) should be specific to signatures and not to data types
(algebras);

(2) data type reductions can be captured by congruences. In such a
case, the operations are automatically redefined to operate on the
quotient data type (algebra), but the predicates need a special
treatment.

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 7/42

Logically Extended Signatures

logical type

w ∈ S+

w = (nat, bool), w = (nat, nat, bool)

logical S-sorted signature
ΣL contains only logical symbols (predicate symbols)
ΣL = {Isgrz,=}

logically extended S-sorted signature
(Σ, ΣL), where Σ is an S-sorted signature

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 8/42

(Σ, ΣL)-algebras

A Σ-algebra does the following:
associates domains to sorts
interprets the function symbols as operations of corresponding
types

A (Σ, ΣL)-algebra does the following:
associates domains to sorts
interprets the function symbols as operations of corresponding
types
interprets the logical symbols into {0, 1,⊥}

We use Kleene’s 3-valued first order logic
|Kleene〉

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 9/42

Kleene’s 3-valued First Order Logic

first order formulas over (Σ, ΣL) and X

L(Σ, ΣL, X)

positive formulas

L+(Σ, ΣL, X)

assignment
γ : X → A

the interpretation function of ϕ into A

IA(ϕ) : Γ(X,A) → A ∪ {0, 1,⊥}

A |= ϕ ⇔ (∀γ : X → A)(IA(ϕ)(γ) = 1)

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 10/42

Abstractions of Models

An abstraction of a (Σ, ΣL)-algebra A is any couple consisting of:

a quotient algebra of A under a congruence ρ (A/ρ), and

an interpretation of the logical symbols into A/ρ

Congruences can be defined by:
surjective homomorphisms
sets of predicates
partitions
etc.

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 11/42

Property Preservation

DA/A

Z
DA/Property =b

A
Property =b

strong-preservation — if a set of properties with truth values true
or false in the abstract system has corresponding properties in the
concrete system with the same truth values;

weak-preservation — if a set of properties true in the abstract
system has corresponding properties in the concrete system that
are also true;

error-preservation — if a set of properties false in the abstract
system has corresponding properties in the concrete system that
are also false.

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 12/42

Types of Abstractions

pA(a′
1, . . . , a

′
n), a′

i ∈ [ai] pA/ρ([a1], . . . , [an])

∀∀-abs ∀∃-abs ∃0,1∀-abs

all 1 1 1 1
all 0 0 0 0

⊥ and 0/1 ⊥ 0,⊥ ⊥

0 and 1 ⊥ 0 1

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 13/42

Property Preservation –∀∀

Theorem Let A be a (Σ, ΣL)-algebra, ρ a ∀∀-abstraction of A, and ϕ a
formula. Then

IA/ρ(ϕ)(γ) = b ⇒ (∀γ′ ∈ γ)(IA(ϕ)(γ′) = b),

for any b ∈ {0, 1} and γ ∈ Γ(X,A/ρ).

Corollary ∀∀-abstractions of (Σ, ΣL)-algebras are strongly preserving
w.r.t. formulas in L(Σ, ΣL, X).

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 14/42

Property Preservation –∀∃

Theorem Let A be a (Σ, ΣL)-algebra, ρ an abstraction of A, and ϕ a
formula in L+(Σ, ΣL, X). If ρ is an ∀∃-abstraction then

IA/ρ(ϕ)(γ) = 1 ⇒ (∀γ′ ∈ γ)(IA(ϕ)(γ′) = 1),

for all γ ∈ Γ(X,A/ρ).

Corollary ∀∃-abstractions of (Σ, ΣL)-algebras are weakly preserving
w.r.t. formulas in L+(Σ, ΣL, X).

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 15/42

Property Preservation –∃0,1∀

Theorem Let A be a (Σ, ΣL)-algebra, ρ an abstraction of A, and ϕ a
formula in L+(Σ, ΣL, X). If ρ is an ∃0,1∀-abstraction then

IA/ρ(ϕ)(γ) = 0 ⇒ (∀γ′ ∈ γ)(IA(ϕ)(γ′) = 0),

for all γ ∈ Γ(X,A/ρ).

Corollary ∃0,1∀-abstractions of (Σ, ΣL)-algebras are error preserving
w.r.t. formulas in L+(Σ, ΣL, X).

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 16/42

Applications

The following formalisms can be viewed as particular cases of our
approach (regarding the abstraction method and the corresponding
preservation results):

predicate abstraction

shape analysis

the technique of duplicating predicate symbols

McMillan’s approach

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 17/42

Abstractions of ADTs

Abstract Data Type (ADT): class of algebras closed under
isomorphism

monomorphic
polymorphic

Specification of an ADT
syntax (fixes the “form”)
semantics (fixes the “meaning”)

Initial specification
(syntax) Sp = (Σ, E) where Σ is a signature and E is a set of
Σ-equations
(semantics) M(Sp) = {A|A ∼= TΣ,E}

M(Sp) is also called the monomorphic ADT defined by Sp

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 18/42

Abstractions of ADTs

Initial logically extended specification

(syntax) Sp = (Σ, ΣL, E, Σ
TΣ,E

L)

(Σ, ΣL) is a logically extended signature
E is a set of Σ-equations

Σ
TΣ,E

L is a set of logical operations on TΣ,E

(semantics) M(Sp) = {A|A ∈ AlgΣ,ΣL
∧ A ∼= TΣ,ΣL,E} where

TΣ,ΣL,E = (TΣ,E , ΣTΣ,E , Σ
TΣ,E

L)

Theorem TΣ,ΣL,E is an initial algebra in M(Sp).

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 19/42

The Keeping-up Program

Z. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems, Springer-Verlag, 1992.

local x, y: integer where x = y = 0

P1 ::









l0 : loop forever do




l1 : await x < y + 1

l2 : x := x + 1













‖ P2 ::









m0 : loop forever do




m1 : await y < x + 1

m2 : y := y + 1













Global safety property: ¤(|x − y| ≤ 1)

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 20/42

Specification ofKeeping-up (I)

LSpec Keeping-up
sorts: nat

vect(2)
bool

opns: Zero : nat
True, False : bool
Succ : nat → nat
Conv : bool → nat
Leq : nat nat → bool
Add : nat nat → nat
Trans : vect(2) → vect(2)

lopns: GlobalSafety : vect(2)

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 21/42

Specification ofKeeping-up (II)

eqns: Conv(False) = 0
Conv(True) = 1
Add(x, Zero) = x
Add(x, Succ(y)) = Succ(Add(x, y))
Leq(Zero, x) = True
Leq(Succ(x), Zero) = False
Leq(Succ(x), Succ(y)) = Leq(x, y)
Trans((x, y)) = (Add(x, Conv(Leq(x, y))), y)
Trans((x, y)) = (x, Add(y, Conv(Leq(y, x))))

leqns: GlobalSafetyQ([(x, x]Q) = 1
GlobalSafetyQ([(x, Succ(x)]Q) = 1
GlobalSafetyQ([(Succ(x), x]Q) = 1

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 22/42

Abstraction of Keeping-up

Succ(x) − Succ(y) = x − y

Abs of Keeping-up
vars: x, y : nat
abs: [(Succ(x), Succ(y))]Q = [(x, y)]Q
type: ∀∀

Equivalence classes:

[[(Zero, Zero)]Q]

[[(Succ(Zero), Zero)]Q]

[[(Zero, Succ(Zero))]Q]

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 23/42

The Bakery Algorithm

L. Lamport. A New Solution of the Dijkstra’s Concurrent Problem,
Communications of the ACM 17, 1974, 453–455.

local x, y: integer where x = y = 0

P1 ::



















1 : x := y + 1;

2 : loop forever while

y 6= 0 ∧ x > y;

3 : critical section;

4 : x := 0;



















‖ P2 ::



















1 : y := x + 1;

2 : loop forever while

x 6= 0 ∧ y ≥ x;

3 : critical section;

4 : y := 0;



















Safety property:

(∀(x, x′, y, y′, z) reachable)(¬CriticalSection(x, x′, y, y′, z))

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 24/42

Specification ofBakery (I)

LSpec Bakery
sorts: nat

vect(5)
opns: Succ : nat → nat

Trans : vect(5) → vect(5)
lopns: CriticalSection : vect(5)
vars: x, x′, y, y′, z : nat

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 25/42

Specification ofBakery (II)

eqns: Trans((0, 0, 0, 0, 0)) = (1, 1, 1, 1, 0)
Trans((1, 1, 1, 1, 0)) = (1, 2, 1, 1, 0)
Trans((1, 2, 1, 1, 0)) = (0, 0, 1, 1, 2)
Trans((0, 0, y, y′, z)) = (Succ(y), 1, y, y′, 1)
Trans((x, x′, 0, 0, z)) = (x, x′, Succ(x), 1, 2)
Trans((x, 1, 0, 0, 1)) = (x, 2, 0, 0, 1)
Trans((x, 1, y, 1, 2)) = (x, 2, y, 1, 2)
Trans((x, 2, 0, 0, 1)) = (0, 0, 0, 0, 0)
Trans((x, 2, y, 1, z)) = (0, 0, y, 1, 2)
Trans((0, 0, y, 1, 2)) = (0, 0, y, 2, 2)
Trans((x, 1, y, 1, 1)) = (x, 1, y, 2, 1)
Trans((0, 0, y, 2, 2)) = (0, 0, 0, 0, 0)
Trans((x, 1, y, 2, 1)) = (x, 1, 0, 0, 1)

leqns: CriticalSectionQ([(x, 2, y, 2, z)]Q)

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 26/42

Abstraction of Bakery

Abs of Bakery
vars: x1, x

′
1, x2, x

′
2, y1, y

′
1, y2, y

′
2 : nat

abs: [(x1, x
′
1, y1, y

′
1, 0)]Q = [(x2, x

′
2, y2, y

′
2, 0)]Q

[(x1, x
′
1, y1, y

′
1, 1)]Q = [(x2, x

′
2, y2, y

′
2, 1)]Q

[(x1, x
′
1, y1, y

′
1, 2)]Q = [(x2, x

′
2, y2, y

′
2, 2)]Q

type: ∀∀

Equivalence classes:

[[(1, 1, 0, 0, 1)]Q]

[[(0, 0, 1, 1, 2)]Q]

[[(0, 0, 0, 0, 0)]Q] = {[(0, 0, 0, 0, 0)]Q, [(1, 1, 1, 1, 0)]Q, [(1, 1, 2, 1, 0)]Q}

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 27/42

Conclusions

What we have done:

general formalism for abstraction of (abstract) data types

classification of abstractions w.r.t. the property preservation they
assure

equationally specified abstractions in the context of equationally
specified abstract data types

What remains to be done:

extensions to temporal logics

overloading, ordered sorts, hidden sorts etc.

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 28/42

Specification ofA = (N, +A)

LSpec Nat
sorts: nat
opns: Zero : nat

Succ : nat → nat
Add : nat nat → nat

vars: x, y : nat
eqns: Add(x, Zero) = x

Add(x, Succ(y)) = Succ(Add(x, y))

〈Back

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 29/42

Specification ofA = (N, +A)

LSpec Nat
sorts: nat
opns: Zero : nat

Succ : nat → nat
Add : nat nat → nat

−→ lopns: Isgrz : nat
vars: x, y : nat
eqns: Add(x, Zero) = x

Add(x, Succ(y)) = Succ(Add(x, y))
−→ leqns: IsgrzQ([Succ(x)]Q) = 1

〈Back|

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 30/42

Specification ofA/ρ = (N/ρ, +
A/ρ)

LSpec Nat
sorts: nat
opns: Zero : nat

Succ : nat → nat
Add : nat nat → nat

lopns: Isgrz : nat
vars: x, y : nat
eqns: Add(x, Zero) = x

Add(x, Succ(y)) = Succ(Add(x, y))
leqns: IsgrzQ([Succ(x)]Q) = 1

Abs of Nat
vars: x : nat
abs: [Succ(Succ(x))]Q = [Succ(Zero)]Q
type: ∀∀

〈Back|

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 31/42

Kleene’s 3-valued Interpretation

[0] = {0} and [1] = {1, 2, . . .}

=A/ρ [0] [1]

[0] 1 0

[1] 0 ⊥

=A/ρ ([1], [1]) is evaluated to ⊥ because two arbitrary numbers in [1]
can be equal or different.

〈Back

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 32/42

Kleene’s 3-valued Interpretation

T

0 1

Logical order

T

0 1

Information order

∨ 0 1 ⊥

0 0 1 ⊥

1 1 1 1

⊥ ⊥ 1 ⊥

¬

0 1

1 0

⊥ ⊥

∧ 0 1 ⊥

0 0 0 0

1 0 1 ⊥

⊥ 0 ⊥ ⊥

〈Back|

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 33/42

∀∃-abstractions

a1
,

a2
,

a3
, a1

DA/

A

h

A
P ()=1 DA/

P ()=1]

pA/ρ([a1], . . . , [an]) = 1 if (∀i)(∀a′
i ∈ [ai])(p

A(a′
1, . . . , a

′
n) = 1)

pA/ρ([a1], . . . , [an]) = 0 if (∀i)(∃a′
i ∈ [ai])(p

A(a′
1, . . . , a

′
n) = 0)

pA/ρ([a1], . . . , [an]) = ⊥, otherwise.

〈Back|

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 34/42

Applications: Shape Analysis

Shape Analysis is a Data Flow Analysis technique mainly used for
complex analysis of dynamically allocated data structures

F. Nielson, H.R. Nielson, Ch. Hankin. Principles of Program
Analysis, Springer-Verlag, 1999.

It is based on:

“observing” the shape of these structures

extracting a finite characterization of them in the form of a shape
graph

The shape graph is an abstraction of the behavior of the original data
type. The analysis goes on by using corresponding preservation
results.

〈Back

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 35/42

Applications: Shape Analysis

Example: original data type of acyclic lists (Sagiv, Reps, Wilhelm, 2002)

x y t e

u1 1 1 0 0

u2 0 0 0 0

u3 0 0 0 0

u4 0 0 0 0

x, y, t and e are
unary predicates

n u1 u2 u3 u4

u1 0 1 0 0

u2 0 0 1 0

u3 0 0 0 1

u4 0 0 0 0

n is a binary predi-
cate

← 2-valued logic

U1 U4U3U2X

Y

n n n

〈Back
F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 36/42

Applications: Shape Analysis

Example: abstract data type of acyclic lists (the abstraction is driven by
x, y, t and e)

x y t e

u1 1 1 0 0

u234 0 0 0 0

x, y, t and e are
unary predicates

n u1 u234

u1 0 ⊥

u234 0 ⊥

n is a binary predi-
cate

← 3-valued logic
← ∀∀

U1X

Y

n
U234

〈Back

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 37/42

Applications: Shape Analysis

An embedding from S into S′ is any surjective function f : US → US′

such that

IS(p)(u1, . . . , uk) ⊑ IS′

(p)(f(u1), . . . , f(uk)),

for any any predicate symbol p of arity k and all u1, . . . , uk ∈ US .

Theorem (Embedding Theorem)

Let S = (US , IS) and S′ = (US′

, IS′

) be two structures, and f be an
embedding from S into S′. Then, for every formula ϕ and every
complete assignment γ for ϕ, IS(ϕ)(γ) ⊑ IS′

(ϕ)(f ◦ γ).

The embedding theorem is a particular case of our theorem regarding
property preservation by ∀∀-abstractions

〈Back|

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 38/42

Applications: Duplicating Predicate Symbols

E. Clarke, O. Grumberg, D.E. Long, 1994

D. Dams, R. Gerth, O. Grumberg, 1997

M. Bidoit, A. Boisseau, 2001

Basics:

associate copies to predicate symbols, P⊕ and P⊖

derive two versions of each formula, ϕ⊕ and ϕ⊖

P (t1, . . . , tn)⊕ = P⊕(t1, . . . , tn) and similar for ⊖

(ϕ1 ∨ ϕ2)⊕ = (ϕ1⊕ ∨ ϕ2⊕) and similar for ⊖ and the other
operators except for ¬
(¬ϕ)⊕ = ¬(ϕ⊖) and (¬ϕ)⊖ = ¬(ϕ⊕)

use ϕ⊕ for validation and ϕ⊖ for refutation

〈Back

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 39/42

Applications: Duplicating Predicate Symbols

M. Bidoit and A. Boisseau (2001) use an universal algebra formalism
to model security protocols and the technique of duplicating predicate
symbols to verify security properties:

messages = terms in a term algebra

message exchanges = equations and formulas in a first order
logic with equality

states and reachability relation

secrecy property: S’s private key (k−1(S)) remains secret

(∀q0, q : State)(¬(q0.I |= k−1(S))∧Reach(q0, q) ⇒ ¬(q |= k−1(S)))

〈Back

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 40/42

Applications: Duplicating Predicate Symbols

The abstraction technique:

abstractions are driven by epimorphisms A
h

−→ A
h

PAh

⊕ (b1, . . . , bn) iff (∀i)(∀ai ∈ h−1(bi))(P
A(a1, . . . , an)

PAh

⊖ (b1, . . . , bn) iff (∀i)(∃ai ∈ h−1(bi))(P
A(a1, . . . , an)

Now, one of the main results proved by Bidoit and Boisseau states that:

A
h |= ϕ⊕ ⇒ A |= ϕ

and
A

h 6|= ϕ⊖ ⇒ A 6|= ϕ.

〈Back

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 41/42

Applications: Duplicating Predicate Symbols

In our approach we associate to each predicate P a new copy P ′ and
interpret it as ¬P .

Theorem The following properties holds true:

if ρ is a ∀∃-abstraction of A, then

A/ρ |= ϕ′ ⇒ A |= ϕ

if ρ is an ∃0,1∀-abstraction of A, then

A/ρ 6|= ϕ′ ⇒ A 6|= ϕ

where ϕ′ is obtained from ϕ by replacing ¬P by P ′ and ¬Q′ by Q.
〈Back|

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 42/42

	Aim
	Framework
	Terminology
	A Motivating Example
	A Motivating Example (cont'd)
	A Motivating Example (cont'd)
	Logically Extended Signatures
	$(Sigma ,Sigma _L)$-algebras
	Kleene's 3-valued First Order Logic
	Abstractions of Models
	Property Preservation
	Types of Abstractions
	Property Preservation -- $�orall �orall $
	Property Preservation -- $�orall exists $
	Property Preservation -- $exists ^{0,1}�orall $
	Applications
	Abstractions of ADTs
	Abstractions of ADTs
	The Keeping-up Program
	Specification of {�lue Keeping-up} (I)
	Specification of {�lue Keeping-up} (II)
	Abstraction of {�lue Keeping-up}
	The Bakery Algorithm
	Specification of {�lue Bakery} (I)
	Specification of {�lue Bakery} (II)
	Abstraction of {�lue Bakery}
	Conclusions
	Specification of $A=(�N ,+^A)$
	Specification of $A=(�N ,+^A)$
	Specification of $A/_
ho =(�N /_
ho ,+^{A/_
ho })$
	Kleene's 3-valued Interpretation
	Kleene's 3-valued Interpretation
	$�orall exists $-abstractions
	Applications: Shape Analysis
	Applications: Shape Analysis
	Applications: Shape Analysis
	Applications: Shape Analysis
	Applications: Duplicating Predicate Symbols
	Applications: Duplicating Predicate Symbols
	Applications: Duplicating Predicate Symbols
	Applications: Duplicating Predicate Symbols

