Abstractions of Data Types

Ferucio Laurenţiu Ţiplea

Faculty of Computer Science "Al.I.Cuza" University of Iasi 6600 Iasi, Romania

Aim

- Investigate three types of abstractions in the context of (abstract) data types, and provide preservations results that generalize preservation results known from:
 - Shape analysis
 - Predicate abstraction
 - McMillan's approach
 - Duplicating predicate symbols technique
 - etc.
- Investigate equationally defined abstractions in the context of (abstract) data types.

Framework

Abstract data types modeled by universal algebras

- 1. J. Mitchell. *Foundations of Programming Languages*, The MIT Press, 1996.
- 2. J. Loecks, H.-D. Ehrich, M. Wolf. *Algebraic Specification of Abstract Data Types*, in Handbook of Logic in Computer Science, vol 5, Clarendon Press, 2000, 217–316.
- 3. H. Ehrig, D. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial Semantics, Springer-Verlag, 1985.
- 4. H. Ehrig, D. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and Constraints, Springer-Verlag, 1990.

Terminology

- Data types modeled by universal algebras. Why?
 - mathematical precision
 - independence of implementation
 - axiomatic definition of operations
 - suitable to reason about operations and their properties
- Abstract data types modeled by classes of universal algebras closed under isomorphism. Why?
 - the closer under isomorphism corresponds to the similarity concept
- Specifications given by sets of equations
- Model = data type (algebra) which satisfies a specification

A Motivating Example

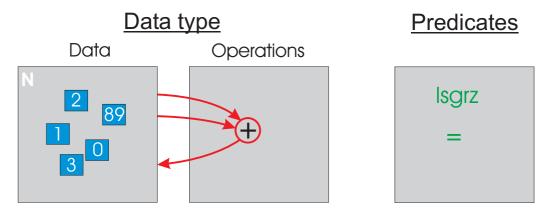


Figure: A data type $A = (N, +^A)$ together with a set of predicates

The following property holds true:

$$(\forall x, y \in A)(Isgrz^A(x) \lor Isgrz^A(y) \Rightarrow Isgrz^A(x + ^Ay))$$

 $|Spec1\rangle$

A Motivating Example (cont'd)

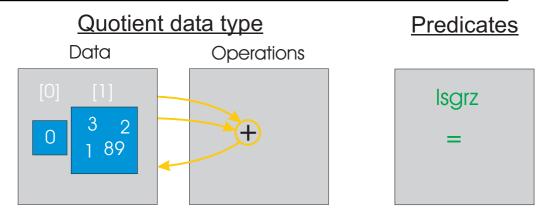


Figure: The quotient data type $A/\rho = (N/\rho, +A/\rho)$ together with a set of predicates

Let $Isgrz^{A/\rho}$ be the interpretation of Isgrz in A/ρ given by

$$Isgrz^{A/\rho}([a]_{\rho})$$
 iff $(\forall a' \in [a]_{\rho})(Isgrz^{A}(a'))$

The following property holds true:

$$(\forall x, y \in A/_{\rho})(Isgrz^{A/_{\rho}}(x) \lor Isgrz^{A/_{\rho}}(y) \Rightarrow Isgrz^{A/_{\rho}}(x + A/_{\rho} y))$$

 $|Spec2\rangle$

A Motivating Example (cont'd)

Conclusions:

- the meta-language used to express properties of data types (algebras) should be specific to signatures and not to data types (algebras);
- (2) data type reductions can be captured by congruences. In such a case, the operations are automatically redefined to operate on the quotient data type (algebra), but the predicates need a special treatment.

Logically Extended Signatures

- logical type
 - \bullet $w \in S^+$
 - \bullet w = (nat, bool), w = (nat, nat, bool)
- logical S-sorted signature
 - Σ_L contains only logical symbols (predicate symbols)
 - $\Sigma_L = \{Isgrz, =\}$
- logically extended S-sorted signature
 - (Σ, Σ_L) , where Σ is an S-sorted signature

(Σ, Σ_L) -algebras

- lacksquare A Σ -algebra does the following:
 - associates domains to sorts
 - interprets the function symbols as operations of corresponding types
- lacksquare A (Σ, Σ_L) -algebra does the following:
 - associates domains to sorts
 - interprets the function symbols as operations of corresponding types
 - interprets the logical symbols into $\{0, 1, \bot\}$

We use Kleene's 3-valued first order logic

 $|Kleene\rangle$

Kleene's 3-valued First Order Logic

- first order formulas over (Σ, Σ_L) and X
 - \bullet $\mathcal{L}(\Sigma, \Sigma_L, X)$
- positive formulas
 - $\mathcal{L}^+(\Sigma,\Sigma_L,X)$
- assignment
 - \bullet $\gamma: X \to A$
- lacksquare the interpretation function of φ into ${\bf A}$
 - $\mathcal{I}_{\mathbf{A}}(\varphi): \Gamma(X,\mathbf{A}) \to A \cup \{0,1,\perp\}$

$$\mathbf{A} \models \varphi \Leftrightarrow (\forall \gamma : X \to A)(\mathcal{I}_{\mathbf{A}}(\varphi)(\gamma) = 1)$$

Abstractions of Models

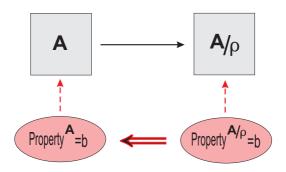
An abstraction of a (Σ, Σ_L) -algebra **A** is any couple consisting of:

- **a** quotient algebra of **A** under a congruence ρ (**A**/ ρ), and
- ullet an interpretation of the logical symbols into ${f A}/_
 ho$

Congruences can be defined by:

- surjective homomorphisms
- sets of predicates
- partitions
- etc.

Property Preservation



- strong-preservation if a set of properties with truth values true or false in the abstract system has corresponding properties in the concrete system with the same truth values;
- weak-preservation if a set of properties true in the abstract system has corresponding properties in the concrete system that are also true;
- error-preservation if a set of properties false in the abstract system has corresponding properties in the concrete system that are also false.

Types of Abstractions

$p^A(a_1', \ldots, a_n'), a_i' \in [a_i]$	$p^{A/\rho}([a_1],\ldots,[a_n])$		
	∀∀-abs	<u>∀∃-abs</u>	$\exists^{0,1} \forall \text{-abs}$
all 1	1	1	1
all 0	0	0	0
\perp and 0/1		0,⊥	
0 and 1		0	1 1

Property Preservation – $\forall \forall$

Theorem Let A be a (Σ, Σ_L) -algebra, ρ a $\forall \forall$ -abstraction of A, and φ a formula. Then

$$\mathcal{I}_{\mathbf{A}/\rho}(\varphi)(\gamma) = b \implies (\forall \gamma' \in \gamma)(\mathcal{I}_{\mathbf{A}}(\varphi)(\gamma') = b),$$

for any $b \in \{0,1\}$ and $\gamma \in \Gamma(X, \mathbf{A}/\rho)$.

Corollary $\forall \forall$ -abstractions of (Σ, Σ_L) -algebras are strongly preserving w.r.t. formulas in $\mathcal{L}(\Sigma, \Sigma_L, X)$.

Property Preservation $- \forall \exists$

Theorem Let A be a (Σ, Σ_L) -algebra, ρ an abstraction of A, and φ a formula in $\mathcal{L}^+(\Sigma, \Sigma_L, X)$. If ρ is an $\forall \exists$ -abstraction then

$$\mathcal{I}_{\mathbf{A}/\rho}(\varphi)(\gamma) = 1 \Rightarrow (\forall \gamma' \in \gamma)(\mathcal{I}_{\mathbf{A}}(\varphi)(\gamma') = 1),$$

for all $\gamma \in \Gamma(X, \mathbf{A}/\rho)$.

Corollary $\forall \exists$ -abstractions of (Σ, Σ_L) -algebras are weakly preserving w.r.t. formulas in $\mathcal{L}^+(\Sigma, \Sigma_L, X)$.

Property Preservation $-\exists^{0,1}\forall$

Theorem Let A be a (Σ, Σ_L) -algebra, ρ an abstraction of A, and φ a formula in $\mathcal{L}^+(\Sigma, \Sigma_L, X)$. If ρ is an $\exists^{0,1}\forall$ -abstraction then

$$\mathcal{I}_{\mathbf{A}/\rho}(\varphi)(\gamma) = 0 \Rightarrow (\forall \gamma' \in \gamma)(\mathcal{I}_{\mathbf{A}}(\varphi)(\gamma') = 0),$$

for all $\gamma \in \Gamma(X, \mathbf{A}/\rho)$.

Corollary $\exists^{0,1}\forall$ -abstractions of (Σ, Σ_L) -algebras are error preserving w.r.t. formulas in $\mathcal{L}^+(\Sigma, \Sigma_L, X)$.

Applications

The following formalisms can be viewed as particular cases of our approach (regarding the abstraction method and the corresponding preservation results):

- predicate abstraction
- shape analysis
- the technique of duplicating predicate symbols
- McMillan's approach

Abstractions of ADTs

- Abstract Data Type (ADT): class of algebras closed under isomorphism
 - monomorphic
 - polymorphic
- Specification of an ADT
 - syntax (fixes the "form")
 - semantics (fixes the "meaning")
- Initial specification
 - (syntax) $Sp = (\Sigma, E)$ where Σ is a signature and E is a set of Σ -equations
 - (semantics) $\mathcal{M}(Sp) = \{\mathbf{A} | \mathbf{A} \cong \mathbf{T}_{\Sigma, E}\}$

 $\mathcal{M}(Sp)$ is also called the monomorphic ADT defined by Sp

Abstractions of ADTs

Initial logically extended specification

- (syntax) $Sp = (\Sigma, \Sigma_L, E, \Sigma_L^{T_{\Sigma, E}})$
 - (Σ, Σ_L) is a logically extended signature
 - E is a set of Σ -equations
 - $\Sigma_L^{T_{\Sigma,E}}$ is a set of logical operations on $T_{\Sigma,E}$
- (semantics) $\mathcal{M}(Sp)=\{\mathbf{A}|\mathbf{A}\in Alg_{\Sigma,\Sigma_L} \wedge \mathbf{A}\cong \mathbf{T}_{\Sigma,\Sigma_L,E}\}$ where

$$\mathbf{T}_{\Sigma,\Sigma_L,E} = (T_{\Sigma,E}, \Sigma^{T_{\Sigma,E}}, \Sigma_L^{T_{\Sigma,E}})$$

Theorem $\mathbf{T}_{\Sigma,\Sigma_L,E}$ is an initial algebra in $\mathcal{M}(Sp)$.

The Keeping-up Program

Z. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag, 1992.

Global safety property: $\Box(|x-y| \le 1)$

Specification of Keeping-up (I)

```
LSpec Keeping-up sorts: nat vect(2) bool opns: Zero: nat True, False: bool Succ: nat \rightarrow nat Conv: bool \rightarrow nat Leq: nat nat \rightarrow bool Add: nat nat \rightarrow nat Trans: vect(2) \rightarrow vect(2) lopns: GlobalSafety: vect(2)
```

Specification of Keeping-up (II)

```
eqns: Conv(False) = 0
Conv(True) = 1
Add(x, Zero) = x
Add(x, Succ(y)) = Succ(Add(x, y))
Leq(Zero, x) = True
Leq(Succ(x), Zero) = False
Leq(Succ(x), Succ(y)) = Leq(x, y)
Trans((x, y)) = (Add(x, Conv(Leq(x, y))), y)
Trans((x, y)) = (x, Add(y, Conv(Leq(y, x))))
leqns: GlobalSafety_Q([(x, x]_Q) = 1
GlobalSafety_Q([(x, Succ(x)]_Q) = 1
GlobalSafety_Q([(Succ(x), x]_Q) = 1
```

Abstraction of Keeping-up

$$Succ(x) - Succ(y) = x - y$$

Abs of Keeping-up

vars: x, y : nat

abs: $[(Succ(x), Succ(y))]_Q = [(x, y)]_Q$

type: $\forall \forall$

Equivalence classes:

- $lacksquare [[(Zero, Zero)]_Q]$
- ullet $[[(Succ(Zero), Zero)]_Q]$
- lacksquare $[[(Zero, Succ(Zero))]_Q]$

The Bakery Algorithm

■ L. Lamport. *A New Solution of the Dijkstra's Concurrent Problem*, Communications of the ACM 17, 1974, 453–455.

$$\begin{array}{c} \operatorname{local} x,y \text{: integer where } x=y=0 \\ \\ P_1 :: \begin{bmatrix} 1: \ x:=y+1; \\ 2: \ loop \ for ever \ while \\ y \neq 0 \ \land \ x > y; \\ 3: \ critical \ section; \\ 4: \ x:=0; \end{bmatrix} \quad \parallel \quad P_2 :: \begin{bmatrix} 1: \ y:=x+1; \\ 2: \ loop \ for ever \ while \\ x \neq 0 \ \land \ y \geq x; \\ 3: \ critical \ section; \\ 4: \ y:=0; \end{bmatrix}$$

Safety property:

 $(\forall (x, x', y, y', z) \text{ reachable})(\neg Critical Section(x, x', y, y', z))$

Specification of Bakery (I)

LSpec Bakery

sorts: nat

vect(5)

opns: $Succ: nat \rightarrow nat$

 $Trans: vect(5) \rightarrow vect(5)$

lopns: CriticalSection : vect(5)

vars: x, x', y, y', z : nat

F.L. Ţiplea. Abstractions of Data Types, SVC Talk, Carnegie-Mellon University, May 4, 2004 – p. 25/42

Specification of Bakery (II)

```
Trans((0,0,0,0,0)) = (1,1,1,1,0)
egns:
        Trans((1,1,1,1,0)) = (1,2,1,1,0)
         Trans((1, 2, 1, 1, 0)) = (0, 0, 1, 1, 2)
         Trans((0, 0, y, y', z)) = (Succ(y), 1, y, y', 1)
         Trans((x, x', 0, 0, z)) = (x, x', Succ(x), 1, 2)
         Trans((x, 1, 0, 0, 1)) = (x, 2, 0, 0, 1)
         Trans((x, 1, y, 1, 2)) = (x, 2, y, 1, 2)
         Trans((x, 2, 0, 0, 1)) = (0, 0, 0, 0, 0)
         Trans((x, 2, y, 1, z)) = (0, 0, y, 1, 2)
         Trans((0,0,y,1,2)) = (0,0,y,2,2)
         Trans((x, 1, y, 1, 1)) = (x, 1, y, 2, 1)
         Trans((0,0,y,2,2)) = (0,0,0,0,0)
        Trans((x, 1, y, 2, 1)) = (x, 1, 0, 0, 1)
        CriticalSection_{\mathcal{O}}([(x,2,y,2,z)]_{\mathcal{O}})
legns:
```

Abstraction of Bakery

Abs of Bakery

vars: $x_1, x'_1, x_2, x'_2, y_1, y'_1, y_2, y'_2 : nat$

abs: $[(x_1, x_1', y_1, y_1', 0)]_Q = [(x_2, x_2', y_2, y_2', 0)]_Q$

 $[(x_1, x_1', y_1, y_1', 1)]_Q = [(x_2, x_2', y_2, y_2', 1)]_Q$

 $[(x_1, x_1', y_1, y_1', 2)]_Q = [(x_2, x_2', y_2, y_2', 2)]_Q$

type: $\forall \forall$

Equivalence classes:

$$\begin{split} & [[(1,1,0,0,1)]_Q] \\ & [[(0,0,1,1,2)]_Q] \\ & [[(0,0,0,0,0)]_Q] = \{[(0,0,0,0,0)]_Q, [(1,1,1,1,0)]_Q, [(1,1,2,1,0)]_Q\} \end{split}$$

Conclusions

What we have done:

- general formalism for abstraction of (abstract) data types
- classification of abstractions w.r.t. the property preservation they assure
- equationally specified abstractions in the context of equationally specified abstract data types

What remains to be done:

- extensions to temporal logics
- overloading, ordered sorts, hidden sorts etc.

Specification of $A = (\mathbf{N}, +^A)$

LSpec Nat

sorts: nat

opns: Zero: nat

 $Succ: nat \rightarrow nat$

 $Add: nat \, nat \rightarrow nat$

vars: x, y : nat

eqns: Add(x, Zero) = x

Add(x, Succ(y)) = Succ(Add(x, y))

 $\langle Back |$

Specification of $A = (\mathbf{N}, +^A)$

LSpec Nat

sorts: nat

opns: Zero: nat

 $Succ: nat \rightarrow nat$

 $Add: nat \, nat \rightarrow nat$

 \longrightarrow lopns: Isgrz: nat

vars: x, y : nat

eqns: Add(x, Zero) = x

Add(x, Succ(y)) = Succ(Add(x, y))

 \longrightarrow legns: $Isgrz_Q([Succ(x)]_Q) = 1$

 $\langle Back|$

Specification of $A/_{\rho}=(\mathbf{N}/_{\rho},+^{A/_{\rho}})$

LSpec Nat

sorts: nat

opns: Zero: nat

 $Succ: nat \rightarrow nat$

 $Add: nat \, nat \rightarrow nat$

lopns: Isgrz: nat

vars: x, y : nat

eqns: Add(x, Zero) = x

Add(x, Succ(y)) = Succ(Add(x, y))

leqns: $Isgrz_Q([Succ(x)]_Q) = 1$

Abs of Nat

vars: x : nat

abs: $[Succ(Succ(x))]_Q = [Succ(Zero)]_Q$

type: $\forall \forall$

 $\langle Back|$

Kleene's 3-valued Interpretation

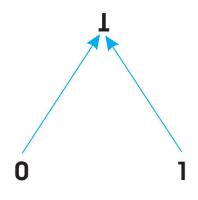
$$[0] = \{0\} \text{ and } [1] = \{1, 2, \ldots\}$$

$$\begin{array}{c|cccc}
 & =^{A/\rho} & [0] & [1] \\
\hline
 & [0] & 1 & 0 \\
 & [1] & 0 & \bot
\end{array}$$

 $=^{A/\rho}([1],[1])$ is evaluated to \perp because two arbitrary numbers in [1] can be equal or different.

 $\langle Back$

Kleene's 3-valued Interpretation



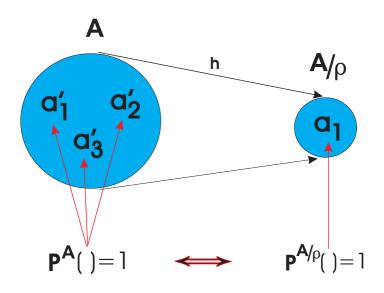
Information order

0 —	 1	1
-----	-----------	----------

Logical order

 $\langle Back|$

$\forall \exists$ -abstractions



•
$$p^{A/\rho}([a_1],\ldots,[a_n])=\bot$$
, otherwise.

 $\langle Back|$

Shape Analysis is a Data Flow Analysis technique mainly used for complex analysis of dynamically allocated data structures

F. Nielson, H.R. Nielson, Ch. Hankin. Principles of Program Analysis, Springer-Verlag, 1999.

It is based on:

- "observing" the shape of these structures
- extracting a finite characterization of them in the form of a shape graph

The shape graph is an abstraction of the behavior of the original data type. The analysis goes on by using corresponding preservation results.

 $\langle Back |$

Example: original data type of acyclic lists (Sagiv, Reps, Wilhelm, 2002)

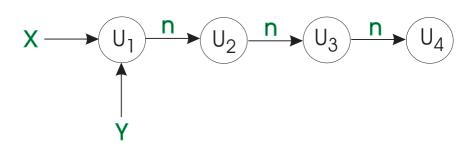
	x	y	t	e
u_1	1	1	0	0
u_2	0	0	0	0
u_3	0	0	0	0
u_4	0	0	0	0

	n	u_1	u_2	u_3	u_4
/	u_1	0	1	0	0
/	u_2	0	0	1	0
/	u_3	0	0	0	1
/	u_4	0	0	0	0

← 2-valued logic

x, y, t and e are n is a binary prediunary predicates

cate



Example: abstract data type of acyclic lists (the abstraction is driven by

x, y, t and e

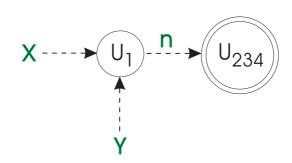
	x	y	t	e
u_1	1	1	0	0
u_{234}	0	0	0	0

$$\begin{array}{c|cccc} n & u_1 & u_{234} \\ \hline u_1 & 0 & \bot \\ u_{234} & 0 & \bot \\ \end{array}$$

 \leftarrow $\forall \forall$

x, y, t and e are n is a binary prediunary predicates

cate



 $\langle Back \rangle$

An embedding from S into S' is any surjective function $f:U^S\to U^{S'}$ such that

$$\mathcal{I}^{S}(p)(u_1,\ldots,u_k) \sqsubseteq \mathcal{I}^{S'}(p)(f(u_1),\ldots,f(u_k)),$$

for any any predicate symbol p of arity k and all $u_1, \ldots, u_k \in U^S$.

Theorem (Embedding Theorem)

Let $S=(U^S,\mathcal{I}^S)$ and $S'=(U^{S'},\mathcal{I}^{S'})$ be two structures, and f be an embedding from S into S'. Then, for every formula φ and every complete assignment γ for φ , $\mathcal{I}^S(\varphi)(\gamma) \sqsubseteq \mathcal{I}^{S'}(\varphi)(f \circ \gamma)$.

The embedding theorem is a particular case of our theorem regarding property preservation by $\forall \forall$ -abstractions

 $\langle Back |$

- E. Clarke, O. Grumberg, D.E. Long, 1994
- D. Dams, R. Gerth, O. Grumberg, 1997
- M. Bidoit, A. Boisseau, 2001

Basics:

- lacktriangle associate copies to predicate symbols, P_\oplus and P_\ominus
- **•** derive two versions of each formula, φ_{\oplus} and φ_{\ominus}
 - $P(t_1,\ldots,t_n)_{\oplus}=P_{\oplus}(t_1,\ldots,t_n)$ and similar for \ominus
 - $(\varphi_1 \lor \varphi_2)_{\oplus} = (\varphi_1_{\oplus} \lor \varphi_2_{\oplus})$ and similar for \ominus and the other operators except for \neg
 - $(\neg \varphi)_{\oplus} = \neg(\varphi_{\ominus})$ and $(\neg \varphi)_{\ominus} = \neg(\varphi_{\oplus})$
- use φ_{\oplus} for validation and φ_{\ominus} for refutation

 $\langle Back$

M. Bidoit and A. Boisseau (2001) use an universal algebra formalism to model security protocols and the technique of duplicating predicate symbols to verify security properties:

- messages = terms in a term algebra
- message exchanges = equations and formulas in a first order logic with equality
- states and reachability relation
- secrecy property: S's private key $(k^{-1}(S))$ remains secret

$$(\forall q_0, q: State)(\neg(q_0.I \models k^{-1}(S)) \land Reach(q_0, q) \Rightarrow \neg(q \models k^{-1}(S)))$$

 $\langle Back |$

The abstraction technique:

- ullet abstractions are driven by epimorphisms ${f A} \stackrel{h}{\longrightarrow} {f A}^h$
- $P_{\oplus}^{A^h}(b_1,\ldots,b_n) \text{ iff } (\forall i)(\forall a_i \in h^{-1}(b_i))(P^A(a_1,\ldots,a_n))$
- $P_{\ominus}^{A^h}(b_1,\ldots,b_n) \text{ iff } (\forall i)(\exists a_i \in h^{-1}(b_i))(P^A(a_1,\ldots,a_n))$

Now, one of the main results proved by Bidoit and Boisseau states that:

$$\mathbf{A}^h \models \varphi_{\oplus} \Rightarrow \mathbf{A} \models \varphi$$

and

$$\mathbf{A}^h \not\models \varphi_{\ominus} \Rightarrow \mathbf{A} \not\models \varphi.$$

 $\langle Back \rangle$

In our approach we associate to each predicate P a new copy P' and interpret it as $\neg P$.

Theorem The following properties holds true:

lacktriangle if ρ is a $\forall \exists$ -abstraction of \mathbf{A} , then

$$\mathbf{A}/\rho \models \varphi' \Rightarrow \mathbf{A} \models \varphi$$

• if ρ is an $\exists^{0,1}\forall$ -abstraction of \mathbf{A} , then

$$\mathbf{A}/\rho \not\models \varphi' \Rightarrow \mathbf{A} \not\models \varphi$$

where φ' is obtained from φ by replacing $\neg P$ by P' and $\neg Q'$ by Q.

 $\langle Back|$