Failure Diagnosis of Discrete Event Systems: A Temporal Logic Approach

Shengbing Jiang

Electrical & Controls Integration Lab
General Motors R&D
Outline

• Introduction

• Notion of Diagnosability in Temporal Logic Setting

• Algorithm for Diagnosis

• Example

• Conclusion
DES: Introduction

- Discrete states: driven by randomly occurring events
- Events: discrete qualitative changes
 - arrival of part in a manufacturing system
 - loss of message packet in a communication network
 - termination of a program in an operating system
 - execution of operation in database system
 - arrival of sensor packet in embedded control system

- Examples of discrete event systems:
 - computer and communication networks
 - robotics and manufacturing systems
 - computer programs
 - automated traffic systems
DES: Example

- States change in response to randomly occurring events \(\Rightarrow\) piecewise-constant state trajectory

- State trajectory a sequence of triples:
 \((x_0, \sigma_1, t_1)(x_1, \sigma_2, t_2)\ldots\)

- Untimed trajectory (for untimed specification):
 \((x_0, \sigma_1)(x_1, \sigma_1)\ldots\)

- Under determinism this is equivalent to:
 \(x_0\) and \(\sigma_1\sigma_2\ldots\)

- Collection of all event traces, language, \(L = \text{pr}(L) \neq \emptyset\)
 Collection of “final” traces, marked language, \(L_m \subseteq L\)

- Language model, \((L, L_m)\), also modeled as automaton:
 \(G := (X, \Sigma, \alpha, x_0, X_m); \ (L(G), L_m(G))\) language model
Failure Diagnosis of DESs

- Failure: deviation from normal or required behavior
 - occurrence of a failure event
 - visiting a failed state
 - reaching a deadlock or livelock

- Failure Diagnosis: detecting and identifying failures

\[e: \text{event generated}; M(e): \text{event observed/sensored} \]
\[M(e) = \epsilon: \text{no sensor for the event } e \]
\[M(e_1) = M(e_2) \neq \epsilon: \text{e.g. motion sensor, detect the movement of a part, not the moving direction and the part type} \]

- Diagnoser: observes the sequence of generated events, and determines (possibly with a delay that is bounded) whether or not a failure occurred
Prior Results:

- Formal language / automaton fault specification
- Fault spec.: only “safety properties”

Our Contribution:

- A temporal logic approach for failure diagnosis of DESs
 Temporal logic has a syntax similar to natural language
 and has a formal semantics
- Fault spec.: both “safety” and “liveness” properties
Linear-time Temporal Logic (LTL): Introduction

Describing properties of sequence of proposition set traces

Notations

- AP: set of atomic propositions
- $\Sigma_{AP} = 2^AP$: power set of AP
- Σ^*_{AP}: set of all finite proposition set traces
- Σ^ω_{AP}: set of all infinite proposition set traces

Temporal operators & their interpretations

- X: next,
- U: until,
- F: future or eventually, $Ff = TrueUf$
- G: globally or always, $Gf = TrueGf$
- B: before, $fBg = ~f Ug$

Syntax of LTL formulae

- $P1$ \(p \in AP \Rightarrow p \) is a LTL formula.
- $P2$ \(f_1 \) and \(f_2 \) are LTL formulae \(\Rightarrow \) so are \(\neg f_1 \), \(f_1 \lor f_2 \), and \(f_1 \land f_2 \).
- $P3$ \(f_1 \) and \(f_2 \) are LTL formulae \(\Rightarrow \) so are \(Xf_1 \), \(f_1Uf_2 \), \(Ff_1 \), \(Gf_1 \), and \(f_1Bf_2 \).
Semantics: proposition-trace $\pi = (L_0, L_1, \cdots) \in \Sigma_{AP}$

$\pi^i = (L_i, \cdots)$, $\forall i \geq 0$

1. $\forall p \in AP$, $\pi \models p \iff p \in L_0$.

2. $\pi \models \neg f_1 \iff \pi \not\models f_1$.

3. $\pi \models f_1 \lor f_2 \iff \pi \models f_1$ or $\pi \models f_2$.

4. $\pi \models f_1 \land f_2 \iff \pi \models f_1$ and $\pi \models f_2$.

5. $\pi \models X f_1 \iff \pi^1 \models f_1$.

6. $\pi \models f_1 U f_2 \iff \exists k \geq 0$, $\pi^k \models f_2$
 and $\forall j \in \{0, 1, \cdots, k - 1\}$, $\pi^j \models f_1$.

7. $\pi \models F f_1 \iff \exists k \geq 0$, $\pi^k \models f_1$.

8. $\pi \models G f_1 \iff \forall k \geq 0$, $\pi^k \models f_1$.

9. $\pi \models f_1 B f_2 \iff \forall k \geq 0$ with $\pi^k \models f_2$,
 $\exists j \in \{0, 1, \cdots, k - 1\}$, $\pi^j \models f_1$.

Examples of LTL formulae

$G\neg R_1$: an invariance (a type of safety) property.

$G((message\ sent) \Rightarrow F(message\ received))$: a recurrence (a type of liveness) property.

FGp : a stability (a type of liveness) property.
Notion of Diagnosability in Temporal Logic Setting

System Model: $P = (X, \Sigma, R, X_0, AP, L)$

- X, a finite set of states;
- Σ, a finite set of event labels;
- $R : X \times \Sigma \cup \{\epsilon\} \times X$, a transition relation,
 $\forall x \in X, \exists \sigma \in \Sigma \cup \{\epsilon\}, \exists x' \in X, (x, \sigma, x') \in R$
 (P is nondeterministic & nonterminating);
- $X_0 \subseteq X$, a set of initial states;
- AP, a finite set of atomic proposition symbols;
- $L : X \rightarrow 2^{AP}$, a labelling function.

$M : \Sigma \cup \{\epsilon\} \rightarrow \Delta \cup \{\epsilon\}$, an observation mask.

Fault specification: LTL formula f.

$\pi = (x_0, x_1, \ldots)$, $\pi_{AP} = (L(x_0), L(x_1), \ldots)$:

$\pi \models f$ if $\pi_{AP} \models f$
Faulty state-trace
An infinite state-trace π is *faulty* if $\pi \not\models f$.

Remark captures both safety and liveness failures

Indicator
A finite state-trace π is an *indicator* if all its infinite extensions in P are faulty.

Remark: can only detect indicators through observation of finite length event-traces

Pre-diagnosability
P is *pre-diagnosable* w.r.t. f if every faulty state-trace in P possesses an indicator as its prefix.

Remark Needed for detecting all failures through observation of finite length event-traces

Example

\[f = GF_{p_2} \text{: not pre-diagnosable; no indicator for } x_0 x_1^\omega \]
\[f = GF_{p_1} \text{: pre-diagnosable} \]
Diagnosability: single specification

P is diagnosable w.r.t. M and f

if P is pre-diagnosable and

Exists a detection delay bound n such that

For all indicator trace π_0

For all extension-suffix π_1 of π_0, $|\pi_1| \geq n$

For all π' indistinguishable from $\pi_0 \pi_1$

It holds that π' is an indicator trace

Example

\[
\begin{aligned}
M(b_1) &= M(b_2) = b; \quad M(c_1) = M(c_2) = c \\
f &= GFp_2: \text{ diagnosable (no faulty trace looks like a non-faulty trace)} \\
f &= Gp_1: \text{ pre-diagnosable but not diagnosable}
\end{aligned}
\]

Diagnosability: multiple specifications

P is diagnosable w.r.t. M and $\{f_i, i = 1, 2, \ldots, m\}$

if P is diagnosable w.r.t. M and each $f_i, i = 1, 2, \ldots, m$.

Remark: Suffices to study the case of only one fault specification
Algorithm for Diagnosis with LTL Specifications

Problem of failure Diagnosis

Given P, M, f:

- Test the diagnosability of P w.r.t. M and f;
- If P is diagnosable, then construct a diagnoser for P.
Algorithm 1: diagnosis for single fault specification

1. Construct a tableau T_f for f that contains all infinite proposition-traces satisfying f, and let $\{F_i, 1 \leq i \leq r\}$ denote the generalized Büchi acceptance condition of f.

2. Test the pre-diagnosability of P.
 - Construct $T_1 = T_f \|_{AP} P$ that generates traces that are accepted by P and are limits of traces satisfying f.
 - Check whether every infinite state-trace generated by T_1 satisfies f, i.e., whether every infinite state-trace generated by T_1 visits each F_i infinitely often: $T_1 \models \wedge_{i=1}^{r} G F F_i$, a LTL model checking problem. NO $\iff P$ is not pre-diagnosable.

3. Test the diagnosability of P.
 - Construct $T_2 = M^{-1} M(T_1) \|_{\Sigma} P$ that accepts finite traces of P indistinguishable from finite traces of T_1, i.e., prefixes of non-faulty traces.
 - Check whether every infinite trace in T_2 satisfies f: $T_2 \models f$, a LTL model checking problem. NO $\iff P$ is not diagnosable.

4. Output $M(T_1)$ as the diagnoser D.

Complexity: $O(2^{|f|} |X|^4)$; size of D: $O(2^{|f|} |X|)$.
Illustrative Example: Mouse in a Maze

Spec 1 Never visit room 1 (an invariance, a type of safety, property).

\(G\neg R_1 \): Globally (always) not in Room 1

Spec 2 Visit room 2 for food infinitely often (a recurrence, a type of liveness, property).

\(GFR_2 \): Globally (always) in future in Room 2
System model

\[M(u) = \epsilon, \ M(o_i) = o_i \text{ for } 0 \leq i \leq 4; \ AP = \{R_1, R_2\}; \]
\[L(x_i) = \emptyset \text{ for } i \notin \{1, 2\}, \ L(x_1) = \{R_1\}, \ L(x_2) = \{R_2\}. \]

Specifications: \(f_1 = G\neg R_1, \ f_2 = GFR_2. \)
Tableau $T_{f_i}, \ i = 1, 2$.

Checking pre-diagnosability: $T^f_{1i} = T_{f_i} \upharpoonright_{AP}, \ i = 1, 2$; $T^f_{1i} \models GFF^1_1? \ i = 1, 2$.

P is pre-diagnosable w.r.t. f_1 and f_2 respectively.
Checking diagnosability: \(T_2^{f_i} = M^{-1}M(T_1^{f_i}) \| \Sigma P, \; i = 1, 2; \)
\(T_2^{f_1} \models G \neg R_1? \; T_2^{f_2} \models GFR_2? \)

\[\begin{align*}
 q_1 & \rightarrow o_1 \rightarrow q_0 \\
 q_0 & \rightarrow o_2 \rightarrow q_2 \\
 q_2 & \rightarrow o_3 \rightarrow q_3 \\
 q_3 & \rightarrow o_4 \rightarrow q_4 \\
 \end{align*} \]

(a)

\[\begin{align*}
 q_0 & \rightarrow o_1 \rightarrow q_1 \\
 q_1 & \rightarrow o_2 \rightarrow q_2 \\
 q_2 & \rightarrow o_3 \rightarrow q_3 \\
 q_3 & \rightarrow o_4 \rightarrow q_4 \\
 \end{align*} \]

(b)

\(P \) is diagnosable w.r.t. \(f_1 \) and \(f_2 \) respectively.
Diagnoser $D = \{M(T_1^{f_1}), M(T_1^{f_2})\}$

Specifications: $f_1 = G \neg R_1, f_2 = G FR_2$.
Conclusion

- A framework for failure diagnosis in LTL setting
- Notions of indicator, pre-diagnosability, and diagnosability
- Algorithms for checking pre-diagnosability & diagnosability in proposed framework
- Construction of diagnoser for on-line diagnosis in proposed framework
- Complexity analysis (polynomial in the plant size, exponential in the formula length)