
MFCS

Probablility

Klaus Sutner
Carnegie Mellon University
Fall 2022



1 Probability

2 Basics

3 Random Variables

4 Bounds



The Roots: Gambling 2

Probability theory is actually one
of the older theories in math, in-
spired by the pressing need to de-
velop sound gambling strategies.

The first major contribution appears
to be by Gerolamo Cardano, the
Liber de Ludo Aleae, around 1564.

Later, luminaries such as Galileo, Fermat and Pascal developed matters
further.



Foucault 3



Dice 4



Randomness 5

What is the huge difference between Foucault’s pendulum and rolling
dice?

Randomness:
One cannot predict the outcome of the next roll, never.

Determinism:
The pendulum behaves in the exact same way, always.

Another way to think about this is computational incompressibility: there
is no shortcut to computing the result for the dice, for the pendulum it is
trivial (modulo knowledge of physics).



Hold It . . . 6

So far, all the concepts we talked about (sets, functions, relations,
natural numbers, integers, rationals, reals, counting, ordered fields, vector
spaces, cardinality) are founded entirely within mathematics.

To be sure, many of them are motivated by observations of the
RealWorldTM, but the definitions require no reference to that world, none
whatsoever.

This is patently false for randomness.
The very concept of randomness is motivated by physics,
it is quite difficult to come up with a purely mathematical
definition.



How Random is It? 7

Anyone who has ever rolled dice or flipped coins knows from experience
that outcomes are indeed unpredictable.

And yet, there is method to the madness: rolling a die 6000 times, one
would expect the number of 6s to be somewhere around 1000. In fact,
one might guess that the count will wind up in the interval [950, 1050].

With more effort, one could even calculate that, if we expand the interval
to [913, 1087], then the likelihood of hitting it is 0.997.

This is the kind of result we are after here, not a profound analysis of
what randomness really means, or how one can define it mathematically.



Actual Experiment 8

Repeat the “roll 6000-times” experiment 2000 times.



Histogram 9



Randomness and Combinatorics 10

There is a brilliant application of randomness to combinatorics due to
Paul Erdős. Suppose you want to show that there is a graph that has the
infamous foobag property.

The honest-labor approach is to sit down and construct a foobag graph.
Alas, that may be very hard.

The alternative is to do the following instead:

consider a random graph, and
show that the probability that is foobag is larger than zero.

Done!



Randomness and Algorithms 11

One big surprise of the last half-century of algorithms research is that
randomness is a priceless resource in the design of algorithms.

This is a bit weird, one usually thinks of an algorithm as a well-organized,
strictly logical sequence of simple, mechanical steps. We always know
exactly what happens next. Doing things at random sounds more like a
big monkey wrench.

Wrong. Most complexity theorists as well as applied algorithms people
would agree with the following statement:

Any halfway reasonable concept of an “efficient
algorithm” must allow for randomness.



Prime Example 12

All practical general primality testing algorithms use randomness
(Solovay-Strassen, Miller-Rabin).

There is a polynomial time primality test due to Agrawal, Kayal and
Saxena (2003) that essentially uses only high school arithmetic that runs
in time (n6) (just to be clear: n is the number of bits of the input).

Unfortunately, it is totally impractical.



Hilbert’s 6th Problem 13

Hilbert was the first to point out that an axiomatization of probability
was needed, a task solved by Kolmogorov in 1933 (note that this took
three decades).

Mathematical Treatment of the Axioms of Physics.
The investigations on the foundations of geometry suggest
the problem: To treat in the same manner, by means of ax-
ioms, those physical sciences in which already today math-
ematics plays an important part; in the first rank are the
theory of probabilities and mechanics.

This is in reference to Hilbert’s seminal “Grundlagen der Geometrie” from
1899, the first modern axiomatization of a mathematical area. Well
worth reading even today.



Kolmogorov’s Framework 14

Kolmogorov gave an almost unreasonably simple axiomatization of
probability. Here are the key concepts†:

There is a set Ω of all possible outcomes of an experiment.
Ω is called the sample space.

The elements of Ω are the elementary events.

Subsets of Ω form compound events.

So an event is just any collection of basic, elementary events.

†Note how Kolmogorov is pushing probability in the direction of set theory.



Simple Examples 15

Experiment: roll two dice.

Event “doubles”: both dice show the same number of spots.

Event “four”: the sum of spots on both dice is 4.

Experiment: flip a coin 10 times.

Event: the coin lands Heads up exactly 5 times.

Event: the coin lands Heads up at least 7 times.



Kolmogorov Axioms 16

We want to associate a probability with each event that conforms more
or less to our intuition and aligns with physical reality†. Technically, we
need a probability measure or a probability distribution, a map

Pr : P(Ω) → R

subject to the following constraints:

0 ≤ Pr[A]

Pr[Ω] = 1

A ∩ B = ∅ implies Pr[A ∪ B] = Pr[A] + Pr[B]

A ∩ B = ∅ means that the events are mutually exclusive. The last axiom
expresses additivity of probability.

†If you are a gambler, the match better be really good



Old Hat 17

This is yet another chapter in our quest to measure things, and in
particular sets.

We already have one hugely important measure for arbitrary sets, namely
cardinality.

Probability measures are another, substantially different example of a
measure.



Consequences 18

In the Kolmogorov setup, ∅ is the impossible event, and Ω the certain
event, with probabilities 0 and 1, respectively.

Pr[ A ] = 1 − Pr[A]

0 ≤ Pr[A] ≤ 1

A ⊆ B implies Pr[A] ≤ Pr[B]

For example, from the axioms we can directly compute

1 = Pr[Ω] = Pr[A ∪ A] = Pr[A] + Pr[A]



Additivity 19

From the additivity axiom and induction we immediately get full finite
additivity: for any finite family of mutually exclusive events

Pr[A1 ∪ A2 ∪ . . . ∪ Ak] = Pr[A1] + Pr[A2] + . . . + Pr[Ak].

For infinite spaces we often want more: countable additivity

Pr[
⋃
n

An] =
∑

n

Pr[An]

for mutually exclusive events An; but, this is not required by the axioms.



A Glitch in the Matrix 20

Note well: Kolmogorov’s axioms only describe probability, the likelihood
of a certain event occurring.

The axioms are perfect in the sense that they are simple and yet
enormously useful. But, they do not address the more basic question of
randomness at all†.

As a matter of experience, if we think of probability as some sort of
limiting frequency, the axioms describe certain physical systems like dice
very accurately—but they do not explain where the randomness comes
from. That’s physics.

†This is a smart move. Defining randomness is brutally hard and requires com-
putability theory and measure theory



Discrete Spaces 21

We will focus on the case when Ω is not too large:

finite spaces

countably infinite spaces

Dealing with finite probability spaces often comes down to a lot of
combinatorics, a lot of counting. Surprisingly, thinking about a problem
probabilistically rather than in terms of direct counting can make life
easier.

For countable spaces we need to deal with infinite sums, things look a bit
more like analysis.



Uniform Probabilities 22

The easiest scenario for a finite space Ω occurs when all elementary
events are equiprobable, their probabilities are all equal. For all ω ∈ Ω

Pr[ω] = 1/|Ω|

Just think about fair coins or dice†.

What does fair mean? Well, the probability of getting Heads is 1/2.

Yup, the last explanation is completely useless. What we really need is a
physical description of a fair coin. It is an excellent and difficult exercise
to come up with one. Then try a fair die.

†We have written ω rather than the pedantic {ω}



Frequencies 23

How do we determine the elementary probabilities Pr[ω] for ω ∈ Ω?

How about the probability for a particular coin to show heads?

Well, we flip the coin N times, where N is “sufficiently large,” and we
count the number of heads. Then

p ≈ #heads
N

is a reasonable approximation for the probability of heads. The
approximation gets better if we make N larger

Sounds plausible, right?



Workhorse 24

Uniform probabilities are often the default assumption when no better
information is available.

For example, in the analysis of average case performance of algorithms,
this is often the weapon of choice. It is relatively easy to deal with this
case, and often the assumption appears not to be too far off the mark†.

Typical example: average case analysis of sorting algorithms.
Similarly we may tackle randomized algorithms this way (quicksort,
quickselect).

†40 years ago, Smale’s analysis of the simplex algorithm caused a bit of an uproar.



Dire Warning 25

Uniform probabilities do not work for countably infinite spaces.

The reason is simple: suppose we try to assign Pr[ω] = p for some
positive real p.
But then Pr[Ω] diverges and certainly is not equal to 1.

For example, if we wanted to assign probabilities to natural numbers we
would need to do something like

Pr[n] = 2−(n+1)



Typical Example: Rolling 2 Dice 26

The experiment is: roll one die, then roll another, report the spots.

It is critical here that the second die is not supposed to know anything
about the first; the two outcomes are completely independent. No
entanglement here.

How do we model this scenario:

Ω = [6] × [6]
uniform probability 1/36 for all elementary events

Of course, this will not work if the dice are loaded.



Events 27

Rolling doubles: A = { (i, i) | i ∈ [6] }.

Pr[A] =
∑

ω∈A Pr[ω] = |A|/36 = 1/6.
Come up with an argument why this result sounds right.

Counting spots: Ak = { (i, j) | i + j = k }, 2 ≤ k ≤ 12.
Let Ck = |Ak|, the number of elementary events in Ak.

k 2 3 4 5 6 7 8 9 10 11 12
Ck 1 2 3 4 5 6 5 4 3 2 1

The probabilities are then Pr[Ak] = Ck/36.



Exercise 28

Question:
Could there be weird dice that produce the same probabilities?

More precisely, we want to assign positive natural numbers to the 2 × 6
faces of the dice. Each face is supposed to have probability 1/6 and we
want the same frequencies for totals as in the last table.

Unlike with ordinary dice, we are allowed to repeat numbers, and we are
not constrained to {1, 2, . . . , 6}.



Wurzelbrunft’s Model 29

Back to standard dice. Wurzelbrunft is very fond of parallel computation
and prefers to think of the two dice as being thrown at the same time,
without any distinction between a first and second die.

The result would then be an unordered pair {a, b} (we allow a = b here).
In this case, there are only 21 possible outcomes.

Here is the analogous table from above:

k 2 3 4 5 6 7 8 9 10 11 12
Ck 1 1 2 2 3 3 3 2 2 1 1

Quoi? What is wrong here? How do we fix it?



Finite Spaces 30

Dice are a typical example of the easiest setup: finite probability spaces

⟨Ω, Pr⟩ Ω = {ω1, . . . , ωn}

In this scenario, all event probabilities are obtained by summation from
the elementary ones, pω = Pr[ω] for ω ∈ Ω: for all events A ⊆ Ω we
have

Pr[A] =
∑
ω∈A

pω

This may look utterly straightforward, but for large spaces and
complicated events it can be exceedingly difficult to evaluate these sums
(recall finite combinatorics).



Countable Spaces 31

For countable spaces we still get away with summations

Pr[A] =
∑
ω∈A

pω

but this time the sums are (usually) infinite.

The good news is that we need not worry about convergence since

0 ≤ pω∑
ω pω = 1

So this is a lot easier than the standard scenario in calculus where one
has to deal with convergence issues all the time.



And Continuous Spaces? 32

Here things get messy. Think about throwing a dart at the unit square.
What is the probability that the dart ends up in the blue region below?

We would need to calculate the area of the blue region, a problem
handled in measure theory.



The Measure Problem 33

How do we measure area, volume and so on in a Euclidean space Rn?
Well, we need a d-dimensional measure, a map µ : P(Rd) → R≥0 such
that

Normalization:
µ([0, 1]d) = 1.
Finite additivity:
A ∩ B = ∅ implies µ(A ∪ B) = µ(A) + µ(B).
Invariance:
for any two equidecomposable sets A, B ⊆ Rd: µ(A) = µ(B).

By equidecomposable we mean the following: we can partition A and B
into finitely many pieces, A =

⋃
i∈[n] Ai, B =

⋃
i∈[n] Bi, such that Ai is

congruent to Bi.
Totally reasonable requirements, or so it seems.



A Challenge 34

The square on the right is
√

5 by
√

5, so both polygons have area 5.

Show that the two polygons can be chopped up into congruent triangles.
What is the least possible number of triangles?



Insanity 35

Theorem (Banach-Tarski Paradox, 1924, (AC))
The unit sphere and the sphere of radius 2 are equidecomposable.

This sounds utterly insane: how can we make a big sphere out of a little
sphere?

The reason the theorem works is that the pieces are very strange and
cannot be visualized. In particular, we cannot assign qualities such as
“volume” or “probability” to these pieces, they are not measurable. So,
there is no contradiction.



Now What? 36

Just give up on the idea of finding measures on the whole powerset

µ : P(Rd) −→ R

make do with a map defined only on “reasonable” subsets of Rd. If you
are familiar with the Lebesgue measure, that works just fine, no
problem†.

Back to Reality.

†If you are more daring, switch to a different universe where all sets of reals are
Lebesgue measurable; R. Solovay, 1970.
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General Unions 38

How about general unions, without mutual exclusiveness? For 2 events,
there is no problem: we just have to avoid double-counting.

Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B]

Alas, for more than 2 events, things get complicated. If an upper bound
is sufficient we may get away with

Union Bound (aka Boole’s Inequality): †

Pr[
⋃

Ai] ≤ Pr[A1] + Pr[A2] + . . . + Pr[An].

†If this sounds utterly obvious, note that Boole worked almost a century before
Kolmogorov. There were no axioms at the time.



And Three? 39

Pr[A ∪ B ∪ C] = Pr[A] + Pr[B] + Pr[C] +

− Pr[A ∩ B] − Pr[A ∩ C] − Pr[B ∩ C] +

+ Pr[A ∩ B ∩ C]

Exercise
Check that every elementary event is counted exactly once.



Inclusion-Exclusion 40

For unions of n events, there is a group of inequalities that start at
Boole’s inequality, and end with full inclusion-exclusion. Let’s assume
that A =

⋃
i∈[n] Ai =

⋂
i∈∅ Ai. Then∑

I⊆[n]

(−1)|I| Pr[
⋂

i∈I
Ai ] = 0

This may seem rather messy, but for n = 2 we just get

Pr[A1 ∪ A2] − Pr[A1] − Pr[A2] + Pr[A1 ∩ A2] = 0

for I = ∅, {1}, {2}, {1, 2}, respectively. Nothing new here. For n = 3 we
would get the result from the previous slide.



Bonferroni Inequalities 41

To lighten notation, define Ik = { I ⊆ [n] | 1 ≤ |I| ≤ k }. Then for odd k

Pr[A] ≤
∑

I∈Ik

(−1)|I|+1 Pr[
⋂

i∈I
Ai ]

But note that for even k the inequality flips:

Pr[A] ≥
∑

I∈Ik

(−1)|I|+1 Pr[
⋂

i∈I
Ai ]

For k = n we’re back at full inclusion-exclusion, and equality holds.



Conditional Probability 42

Often one has additional information about the state of affairs that can
affect the probability of some event A. This is captured by the notion of
conditional probability: suppose Pr[B] > 0 and set

Pr[ A | B ] = Pr[A ∩ B]
Pr[B]

For example, if we roll 2 dice, the probability of getting a 4 is 1/12.

But, if we know that the result is even, the probability changes to 1/6.

On the other hand, if the result is odd, it changes to 0.



Law of Total Probability 43

The last example suggests that it may help to partition Ω into mutually
exclusive events B1, . . . , Bk.

We can then compute probabilities in slices:

Pr[A] =
∑

Pr[A ∩ Bi] =
∑

Pr[ A | Bi ] Pr[Bi]

Of course, the trick is to choose the Bi so that the conditional
probabilities are easy to compute.



Urns 44

It is an age-old principle that every
discussion of basic probability in-
volves urns.

Example: We have 3 urns each containing red or green balls: {G, G},
{G, R, R}, {G, R, R, R}. Experiment: pick an urn with probabilities
1/2, 1/4, 1/4, then a ball in the chosen urn, uniformly at random.
What is the probability that the ball is red?



Solution 45

Events: let Bi “urn i is chosen” and A “ball is red.”

We have Pr[B1] = 1/2, Pr[B2/3] = 1/4.
Pr[ A | B1 ] = 0
Pr[ A | B2 ] = 2/3
Pr[ A | B3 ] = 3/4

So the answer is

Pr[A] = 0 · 1/2 + 2/3 · 1/4 + 3/4 · 1/4 = 17/48 ≈ 0.35



And Ω? 46

Note that we never specified the sample space Ω.

This is typical of probability texts, everyone states the Kolmogorov
axioms, and then forgets what they actually say.

I II III



Independence 47

Here is the opposite idea: two events A and B are independent if
knowledge of one provides no information about the other.

Pr[A ∩ B] = Pr[A] · Pr[B]

Independence is critical in randomized algorithms: we have to assume
that the (pseudo-)random bits know nothing about each other, otherwise
the analysis collapses.

Since randomized algorithms may produce false answers, one usually runs
them repeatedly and then takes a majority vote. Again, independence is
critical for this to work (think about using the same “random bits” in
each run).



Independent Dice 48

Again roll 2 dice and consider the following events
A “even”
B “sum is in {4, 5}”
C “sum is in {4, 5, 8, 9}”

Then A and B fail to be independent, but A and C are independent.

Make sure to do the calculations so you can see why.

Exercise
Suppose A and B are independent. Show that A, B; A, B and A, B are
all independent.



Birthday Problem 49

If there are n people in a room, what is the likelihood that at least two
share a birthday?

Tacit assumptions: there are 365 days in a year, birthdays are
equiprobable, birthdays of people in the room are independent (no twins,
triplets and the like), n ≤ 365.

Pr[E] = 1 − 364
365

363
365 . . .

365 − n + 1
365



Picture 50
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Generalize 51

More generally, we could have n objects that all have one of N
properties.

Under the usual assumptions, the probability that no two share the same
property is

P (n, N) = (1−1/N)(1−2/N) . . . (1−(n−2)/N)(1−(n−1)/N)

Using logarithms and the approximation log(1 − x) ≈ −x for small x we
get the approximation

P (n, N) ≈ e−n(n−1)/2N



N = 1000 52
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Bayes’ Law 53

The following is an immediate consequence of our definitions. Suppose
Pr[B] > 0.

Pr[ A | B ] = Pr[ B | A ] Pr[A]
Pr[B]

Here is a useful generalization: suppose we have a partition B1, . . . , Bn

of Ω where Pr[Bi] > 0 for all i.

Pr[ Bk | A ] = Pr[ A | Bk ] Pr[Bk]∑
i Pr[ A | Bi ] Pr[Bi]

Some find this result rather puzzling: it seems to reverse the relationship
between cause and effect.



More Urns 54

Suppose we have three urns with red and green balls. Let’s assume the
counts are (3, 7), (5, 5) and (4, 6), respectively. We pick one of the urns
and then select one of the balls in the urn, both uniformly at random.
Suppose the result is a red ball.

What is the likelihood that urn 1 was chosen?

Events: Bi “urn i was chosen”, A “red ball chosen” (as the final result).
Then Pr[Bi] = 1/3
Pr[ A | B1 ] = 3/10, Pr[ A | B2 ] = 1/2 and Pr[ A | B3 ] = 2/5.

Hence Pr[ B1 | A ] = 1/4.
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Random Variables 56

Experiments are often associated with some numerical quantity, a
measurement of sorts, which depends on random outcomes: these
thingies are random variables and defined as maps

X : Ω → R

So we are assigning a real value to each elementary event.

The discrete case is always fine and it makes sense to talk about the
probability distribution or probability mass function (pmf)

p(a) = Pr[X = a] = Pr[X−1(a)]



Why Reals? 57

Sometimes one would like to associate outcomes other than reals with an
experiment. For example, we might want a Yes/No answer in a
randomized decision algorithm (important example: primality checker).

This is no problem: as usual, we can fake Yes/No answers by using 1/0
instead. In probability theory, this device is called an indicator variable

X(a) =
{

1 if a ∈ A,
0 otherwise.

Yup, this is just the characteristic function of A ⊆ Ω. Different field,
different terminology, same idea.



And More 58

In addition, reals are just too convenient. For example, nothing stops us
from computing

5X2(a) + 3X(a) − 17

Or we could add or multiply random variables as in X(a) + Y (a), and so
on and so forth.

This allows us to exploit numerous tools from analysis.



Cumulative Distribution Function 59

The cumulative distribution function considers all smaller values of a
random variable:

Pr[X ≤ a]

In the discrete case, the cdfs increase in steps.
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Averages 60

The “average” value of a random variable is usually a good first step in
any attempt to understand what is going on.

There are several reasonable ways to think about averages:

Mean: sum of values over total number of values
Median: middle numerical value

Mode: most frequent value



Expectation 61

Suppose we have a discrete random variable X with pmf p(a).

The expected value or expectation of X is

E[X] =
∑

X(a) · p(a)

So expectation is the mean, a weighted sum and arguably the most
intuitive notion of average. This is often abbreviated in slightly criminal
manner to µ.

Lemma
Expectation is linear in the sense that

E[aX + bY ] = a E[X] + b E[Y ]

where a and b are real constants.



Variance 62

Other than the average value itself, it is also useful to now how far off
the values of a random variable might be, on average. In other words, we
try to measure the dispersion of the values around the mean.

Let µ be the expectation of X. The variance of X is

Var[X] = E[(X − µ)2]

This is often written as σ2 (where σ is the standard deviation).

One might be tempted to study E[|X − µ|] instead, but using squares is
slightly easier (no cases).



Squares 63

Proposition
Var[X] = E[X2] − E[X]2

Proof.

Var[X] = E[(X − µ)2]
= E[X2 − 2Xµ + µ2]
= E[X2] − E[2Xµ] + E[µ2]
= E[X2] − 2µ2 + E[µ2]
= E[X2] − µ2

2



Rules for Variance 64

Lemma

Var[aX + b] = a2 Var[X].

Lemma
Assume that X and Y are independent. Then variance is additive and
multiplicative in the sense that

Var[X + Y ] = Var[X] + Var[Y ]

Var[X · Y ] = Var[X] · Var[Y ]



Probability Distributions 65

Recall the probability mass function associated with a random variable
X : Ω → R .

Given any value a ∈ R, the fiber of a constitutes an event: all elementary
events for which X assumes value a. Hence we have the probabilities

Pr[X = a] = Pr[X−1(a)]

This is really interesting only for a ∈ rng X. It can be useful to think of
X as a map Ω → rng X, in particular in the discrete case.



Discrete Uniform Distribution 66

A random variable with finite range is uniformly distributed if the variable
assumes all possible values with equal probability:

Pr[X = a] = 1/|rng X|

We could think of rolling a die, with the number of spots as a random
variable. If the die is fair, this variable is uniformly distributed.

Dire Warning: this does not work for countably infinite ranges. It does
work for continuous distributions.



Bernoulli 67

Indicator variables with range {0, 1} model the behavior of a (possibly
biased) coin.

Pr[X = 1] = p

E[X] = p

Var[X] = p(1 − p)

You can think of a Bernoulli distribution as modeling a (pseudo-)random
bit source for a randomized algorithm (hopefully with p = 1/2).



Binomial 68

Single bits are not that interesting, so it is natural to ask what happens if
we repeat a Bernoulli experiment n times, independently?

Define indicator variables Xi describing the ith repetition, and let
X = X1 + X2 + . . . + Xn. If the probability of all the Xi is p then

Pr[X = k] =
(

n

k

)
pk(1 − p)n−k

E[X] = np

Var[X] = np(1 − p)



Picture 69
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Geometric 70

Here is another variation on Bernoulli trials: suppose we count the
number of times until the experiment succeeds. We get a random
variable X such that

Pr[X = k] = p(1 − p)k−1

E[X] = 1/p

Var[X] = (1 − p)/p2
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Killer App: Randomized Algorithms 72

Several cryptographic methods require large primes (say, 1000 binary
digits). And the primes have to be new, we cannot look them up in a
table.

The good news is that one can prove that “a lot” of primes with a given
number of bits exist.

The bad news is that we don’t know how to simply generate a k-bit prime
at will. Instead, we generate a random k-bit number and check whether
it is prime. Since there are lots of primes, we will find one fairly soon.

How do we check primality? Well, the only feasible algorithms are
themselves randomized. There is a deterministic polynomial time
algorithm (which fact is utterly amazing) but it is entirely useless in the
RealWorldTM.



A Dirty Secret 73

All randomized algorithms make mistakes.

Why? If a “randomized algorithm” never makes mistakes, regardless of
the random bits used, we can simply use 000 . . . 000. Or
010101 . . . 01010 if you find all-zeros too depressing.

With luck, the errors are one-sided. E.g., there is a primality test due to
Solovay and Strassen that will always return “Yes?” given a prime
number as input, but will say “No” on composite numbers only with
probability 1/2.



Bounds 74

Algorithms like that primality tester usually have unacceptably large error
probability. In applications, we have to run them multiple times and then
take a majority vote to figure out what the answer should be.

For Solovay-Strassen the expected time to get a “No” given a composite
number is only 2.

But note: that is not enough. We need to understand the likelihood that
the actual outcome will deviate far from the expected value. Running the
algorithm only twice is a very bad idea.

As usual, there is trade-off: reliability versus running time.



Markov’s Inequality 75

Lemma (Markov’s Inequality)
Let X be a non-negative random variable with finite expectation µ. Then
for any a > 0: Pr[X ≥ a] ≤ µ/a.

Proof.

E[X] =
∑
x<a

x Pr[X = x] +
∑
x≥a

x Pr[X = x]

≥
∑
x≥a

x Pr[X = x]

≥ a
∑
x≥a

Pr[X = x]

= a Pr[X ≥ a]
2
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Lemma (Chebyshev’s Inequality)
Let X be a random variable with finite expectation µ and standard
deviation σ. Then for any a > 0: Pr[|X − µ| ≥ a σ] ≤ 1/a2.

Proof.
Use Markov’s inequality for the variable Y = (X − µ)2 (so
E[Y ] = Var[X]) and the fact that x 7→ x2 is a strictly monotonic
function on R≥0.

Pr[|X − µ| ≥ a σ] = Pr[(X − µ)2 ≥ a2σ2]

≤ E[(X − µ)2]
a2σ2 = 1/a2

2
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Suppose we throw n balls into n urns, independently and uniformly at
random. Let X be the random variable: number of balls in urn #1.
Define indicator variables Xi = 1 iff ball i lands in urn #1. So
X =

∑
Xi, Pr[Xi = 1] = 1/n and µ = E[X] = 1. Also

Var[Xi] = 1/n (1 − 1/n) and Var[X] =
∑

Var[Xi] = 1 − 1/n.

Markov Pr[X ≥ 7] ≤ 1/7 ≈ 0.142857

Chebyshev Pr[X ≥ 7] = Pr[|X − 1| ≥ 6]

≤ 1 − 1/n

36 ≤ 1/36 ≈ 0.0277778

A much more complicated family of bounds due to Chernoff produces a
much better bound of 0.00048987.
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Table[
Count[ Table[ RandomChoice[Range[100]], {100} ], 1 ],
{100000} ] // Frequencies

produces the output
0 36485
1 37200
2 18576
3 5945
4 1486
5 254
6 50
7 3
8 1



Another Bound 79

Suppose we want a bound for Pr[X ≥ 1 + 10 ln n]. This is a more
interesting situation.

Markov Pr[X ≥ 1 + 10 ln n] ≤ 1/(1 + 10 ln n)

Chebyshev Pr[X ≥ 1 + 10 ln n] = Pr[|X − 1| ≥ 10 ln n]

≤ 1 − 1/n

102 ln2 n
≤ 1

100 ln2 n

Again, Chernoff produces much stronger results: we get a bound of
1/2 n−6.931, and, with more skulduggery, even n−10.
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