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Cardinality 2

Definition
The size of a set is called its cardinality.

Of course, this is not much of a definition. In the words of G. Cantor:

Every aggregate M has a definite “power,” which we also
call its “cardinal number.”
. . . the general concept which, by means of our active faculty
of thought, arises from the aggregate M when we make
abstraction of the nature of its various elements m and of
the order in which they are given.



WTF? 3

In other words, Cantor had some intuition, some vague idea, but
absolutely no way to make this idea precise, at least in the modern sense.
He was never interested in trying to axiomatize set theory.

He did manage, though, to prove a number of critical theorems.

So, there is life without axioms, but it has major pitfalls (Cantor did not
realize, and could not possibly have realizede, that his quest to resolve
the Continuum Hypothesis was doomed).



The Finite Case 4

First, the easy case: if the set in question is finite

A = {a1, a1, a2, . . . , an}

then our notion of cardinality is straightforward: it’s just n. Of course,
we assume that all the ais are different.

A slightly more formal definition:

Definition
A set A is finite if there is a natural number n and a bijection
f : [n]→ A .

As we have seen, the hard part here is define what a natural number is in
the first place (formally as a set, not just an intuitive concept).



Big Question 5

How do we measure the size of sets like

N, Z, Q, R, C, N× N, N→ N, R→ R, . . .

The cheap and useless answer is to say “they’re all infinite” and write
stuff like |N| =∞.

We want much more precision. Ideally, we would like to organize all sets
into a nice hierarchy according to size.



A Dirty Trick 6

To handle infinite sets and infinite cardinalities we really ought to
generalize the natural numbers accordingly. Unfortunately, this requires
an excursion into set theory and some clever ideas by von Neumann, so
we will weasel around this.

Definition
For any set A, write |A| for the cardinality of A.

This is mildly criminal, we have not explained what this cardinality is
actually supposed to be. The notation |A| looks scientific, but means
squat at this point.



The Honest Approach 7

Recall our old project: we want to implement every mathematical object
as a set.

Not really for actual use, but as a reference that settles all possible
questions with absolute precision and rigor.

So, in this situation we should give a set-theoretic definition of cardinal
numbers, thingies that start with the naturals, but then go into the
transfinite.

People like Zermelo, Fraenkel and von Neumann figured out how to do
this about a century ago, but it is too involved and technical for us. If
you are interested, take a look at Ordinals.

http://www.cs.cmu.edu/~sutner/pdf/50-ordinals.pdf


Comparisons First 8

To avoid having to define cardinals, we focus instead on comparing sizes.

How do we compare the size of sets?

More precisely, we would like to pin down what it means that

|A| < |B| or |A| = |B| or |A| > |B|

No problem for finite sets, not so much for infinite sets like N, Q or R.



Here Goes . . . 9

Definition
Let A and B be two arbitrary sets.

|A| = |B| ⇐⇒ ∃ f bijection (f : A←→ B )

|A| ≤ |B| ⇐⇒ ∃ f injection (f : A −→ B )

Sets with the same cardinality are called equipotent or equinumerous.
In symbols: A ≈ B.

Exercise
Verify that at least for finite sets this all makes perfect sense.



Sanity Check I 10

We could also have defined

|B| ≥ |A| ⇐⇒ ∃ f surjection (f : B −→ A )

This makes sense since we already know that there is a surjection B → A
iff there is an injection A→ B (see the next slide in case you have
forgotten).

So |A| ≤ |B| iff |B| ≥ |A|, as any sane person would expect.



Recall: Injections versus Surjections 11

Lemma (AC)
Let A be non-empty.
There is an injection f : A→ B if, and only if,
there is a surjection g : B → A .

Proof.
Let f be the injection. Pick a0 ∈ A and get a surjection g by

g(b) =
{

a if f(a) = b,

a0 if b /∈ rng f.

Assume g is the surjection. For each a ∈ A, there exists a b ∈ B such
that g(b) = a by surjectivity. Pick one such b in the fiber f−1(a), say, b′,
and set f(a) = b′. This requires the axiom of choice in general.
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Sanity Check II 12

At the very least, “same-cardinality” should be an equivalence relation.

reflexive: IA : A←→ A

symmetric: f : A←→ B yields f−1 : B ←→ A

transitive: f : A←→ B and g : B ←→ C yields g ◦ f : A←→ C

So far, so good. We can organize all sets into equivalence classes
according the existence of bijections between them.



Sanity Check III 13

Likewise, “at-most-same-cardinality” is a pre-order: it is reflexive and
transitive. But it catastrophically fails to be a partial order: |A| ≤ |B|
and |B| ≤ |A| does not at all imply that A = B.

Another important property is comparability: we really want for two
arbitrary sets A and B that their cardinalities are related:

|A| ≤ |B| or |B| ≤ |A|

This works fine, too, as long as we have sufficiently strong axioms of set
theory. As usual, we need the Axiom of Choice.



Important Cases 14

For us, the most interesting applications will be to find bijections

f : [n]←→ X

f : N←→ X

f : P(N)←→ X

corresponding to finite, mildly infinite, and badly infinite (size of the
continuum).

Constructing such bijections by hand can be difficult, which is part of the
reason Cantor’s result came as such a surprise to many. And engendered
fierce resistance in some quarters.
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Countability 16

Definition
Let A be a set.

A is countable if there is a surjection f : N→ A or A = ∅.
A is uncountable if it fails to be countable.

So a non-empty set is countable if it can be listed just like N.

a0, a1, a2, . . . , an, an+1, . . .

If A is finite, there will be lots of repetitions, but for infinite A all the ai

can be chosen to be distinct.

Notation: Countably infinite sets are also called denumerable.



Integers are Countable 17

One might think that Z is infinitely larger than N, but that’s not true.
We can easily list Z like so

0, 1,−1, 2,−2, 3,−3, 4,−4, . . .

Exercise
Construct more bijections N↔ Z.

Exercise
After reading the last section in these slides, show that there are
uncountably many such bijections.



Cartesian Products 18

Theorem (Cantor)
N and N× N have the same cardinality.

Proof. Here is a pairing function π : N× N→ N .

π(x, y) = 2x(2y + 1)− 1

It is easy to check that π is indeed a bijection. 2

Exercise
Come up with other pairing functions.



Really? 19

It is easy to get jaded about a result like this, but it’s really far from
clear: N× N contains infinitely many copies of N, so how could it
possibly have the same size?

Even more disconcerting is the fact that

N ≈ N100100100

One needs to consider something like N→ 2 to get away from
countability (this is basically the same as P(N)).



Rationals are Countable 20

Every rational number can be written uniquely in the form a/b where
a ∈ Z, b ∈ N+ and a and b are coprime. In other words, there is an
injection

Q −→ Z× N

But we already now how to map Z into N, so we get an injection

Q −→ N× N

Using our pairing function, we get an injection

Q −→ N

Theorem (Cantor)
The rationals are countable.



Algebraic Numbers 21

A real number is said to be algebraic if it is the root of a polynomial with
integer coefficients. These numbers have a finite description and are
relatively easy to handle. Incidentally, the algebraic numbers form a nice
field between Q and R.

Theorem (Cantor)
The set of algebraic numbers is countable.

Cantor also showed that the reals are uncountable (see below), so this
means that the algebraic numbers are few and far between. Most reals
fail to be algebraic.



A Helpful lemma 22

Lemma (AC)
The union of a countable family of countable sets is countable.

Proof.
Let An, n ∈ N, be the family of sets and let A =

⋃
An. We may safely

assume that An ̸= ∅ for all n. Hence there are surjections fn : N→ An .
Then the map

F : N× N→ A F (n, m) = fn(m)

is a surjection, done.
2



Subsets 23

Lemma
Any subset of a countable sets is countable.

Proof.
Let A countable and B ⊆ A; we may safely assume B is infinite.
Let f : N→ A be a surjection.
Here is a convoluted recursive definition of a partial function g : N→ N

g(n) = f
(
min

(
j ∈ N | f(j) ∈ B ∧ ∀ i < n(f(j) ̸= g(i))

))
Whatever g does, it is clear from the definition that the range of g is a
subset of B.

We claim it is equal to B.



Come again . . . 24

First, g(0) is just f(j0) ∈ B where j0 is minimal such that f(j0) ∈ B.

But then g(1) is f(j1) ∈ B such that j1 > j0 is minimal and
f(j0) ̸= f(j1).

And so on and so forth. We are picking elements in B according to the
order produced by f .

Since B is infinite, we never run out of js, so there is always a minimal
one and g is really defined on all of N.

Note that g is an injection by its definition. Make sure to figure out how
to prove it is also surjective.

2



Another Angle 25

Here is another way to look at this. Suppose we are in the interesting
case when B is infinite.

Define an order ≺ on B as follows:

b ≺ b′ ⇐⇒ min f−1(b) < min f−1(b′)

This order allows us to list B as

b0, b1, b2, . . . , bn, . . .

So B is countable.



Words are Countable 26

Question:
How many words over a finite alphabet are there?

Again, the easiest way to see that there are only countably many words is
to arrange them into an ω-sequence

w0, w1, w2, . . . , wn, wn+1, . . .

The standard way of doing this is to use length-lex order. E.g., for
alphabet {a, b, c} we get:

ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, . . .

Note that standard lexicographic order does not work in this case:

b > ab > aab > aaab > . . . > anb > an+1b > . . .



Depressing Consequence 27

Theorem
There are only countably many computable functions.

Proof.
A computable function can be described by a program, a word over some
alphabet. There are only countably many programs, so there are only
countably many computable functions.

2

At least in mathematics† we encounter uncountably many objects; for
example the set of reals is irreparably uncountable. So most reals are not
computable—whatever computations we perform, they all take place in a
tiny subspace of actual Euclidean space, causing endless problems. Rcall
the lecture on the Traveling Salesperson Problem.

†Hard question: how about physics?



Bizarre Results 28

Lemma
The unit interval [0, 1] ⊆ R has the same size as unit square [0, 1]2 ⊆ R2.



Intuition? 29

This is rather counter-intuitive and raised quite a few eyebrows. Cantor
himself wrote in a letter to Dedekind†:

Je le vois, mais je ne le crois pas . . .

The problem is that one naturally searches for “nice” functions (simple
definition, continuous, differentiable, etc.), not for bizarre constructs that
come out of the abyss of set theory.

†I see it, but I can’t believe it.



Aside: Reals 30

At this point you might ask: what on earth are the reals? If we are
supposed to show the existence of a bijection [0, 1]↔ [0, 1]2 we better
have a solid definition. “Numberline” won’t cut it.

Without going into the weeds, think of a real as consisting of an integer
part plus a fractional part. This is often (and poorly) written

x = ⌊x⌋+ {x}

The integer part is no problem, the fractional part is represented by an
infinite sequence of, say, decimal digits:

r = .r1r2 . . . rn . . .⇝
∑
n≥1

rn 10−n

where ri ∈ {0, 1, . . . , 9} so that 0 ≤ r ≤ 1.



Getting Serious? 31

This “definition” is lousy at best, it is based on a fairly abritrary
representation rather than an attempty to address the actual object.

We will forego the opportunity to inflict cognitive pain on the student
body and not worry about a precise definition in set theory.

If you really want to know, look up

Dedekind cuts,

Cauchy sequences.

Exercise
Try to come up with a bijection based on this fractional part idea.

https://en.wikipedia.org/wiki/Dedekind_cut
https://en.wikipedia.org/wiki/Cauchy_sequence


Hilbert’s Approach 32



Recursive Geometry 33

This produces a sequence of curves [0, 1]→ [0, 1]2 that fill the unit square
in the limit. This is much more natural than Cantor’s original approach.



Overlay 34



Just Notation 35

In the context of cardinality, it is standard usage to write

ℵ0

for the first infinite cardinal. Again, we will not get involved with the
tempting problem to really define what ℵ0 is in terms of set theory.

ℵ0 is the cardinality of N, Z, Q, the algebraic numbers, the set of words
over any (countable) alphabet, the set of decidable relations and
computable functions, the collection of hereditarily finite sets, . . .



Is There More? 36

As it turns out, there are many, many more cardinals floating around.
And, thanks to Cantor, we have very pretty symbols to write them down:

ℵ0,ℵ1,ℵ2, . . . ,ℵn, . . . ,ℵω,ℵωω ,ℵε0 ,ℵℵ1 , . . .

Some find this headache inducing.

Fortunately, in practice, the most important ones are

ℵ0 ℵ1 2ℵ0

ℵ1 is the least cardinality bigger than ℵ0, and 2ℵ0 is the cardinality of
P(N) which turns out to be the cardinality of the continuum R.



Cardinal Arithmetic 37

How does one compute with cardinals?

The good news is that addition and multiplication are trivial.

Lemma
Let λ and κ be two infinite cardinals. Then

λ + κ = λ · κ = max(λ, κ).

Intuitively, this means that the size of the union of two infinite sets is the
same as the cardinality of the larger set. Ditto for Cartesian product.



The Swamp 38

Sadly, cardinal exponentiation is hugely complicated. For example, in
ordinary set theory one cannot even determine the relative size of

2ℵ0 versus ℵ1

We will see in a moment that 2ℵ0 ≥ ℵ1, but equality is open. This is the
famous Continuum Hypothesis and caused Cantor endless grief (some
would say: drove him mad). As it turns out, in Zermelo-Fraenkel set
theory, things could go either way and one can choose 2ℵ0 to be just
about anything one would like it to be.
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Three Theorems 40

Theorem (Cantor-Schröder-Bernstein)
Suppose f : A→ B and g : B → A are injective.
Then A and B have the same cardinality.

Theorem (Cantor I)
The set of real numbers, R, is not countable.

Theorem (Cantor II)
For any set A, the cardinality of P(A) is greater than the cardinality of A.



Say What? 41

Cantor-Schröder-Bernstein is really a sanity check.
We want for all cardinals κ and λ

κ ≤ λ and λ ≤ κ implies κ = λ

Cantor’s first theorem shows that there are at least two levels of infinity,
and that they play a role in calculus.

Cantor’s second theorem shows that there are infinitely many levels of
infinity:

|N| < |P(N)| < |P2(N)| < |P3(N)| < . . .



CSB Proof 42

It suffices to establish the following claim.

Claim
Suppose C ⊆ B ⊆ A and A ≈ C. Then A ≈ B.

To see why the claim suffices, consider injective functions f : X −→ Y
and g : Y −→ X. Now set

A = X

B = g(Y )
C = g(f(X)).

Then certainly X ≈ A ≈ C, and B ≈ Y . From the claim it follows that
A ≈ B, and, by transitivity, X ≈ Y .



Intuition 43

Intuitively, one can motivate the following construction as follows. Think
of the elements of A and B as places, and put a pebble on each place in
A. We have to move all the pebbles in such a way that they wind up on
all the places in B, without collisions.

More precisely, each place in B must be occupied by exactly one pebble
after all the moving is finished. That produces a bijection h : A←→ B.

We have to move all pebbles in x ∈ A−B; say, pebble x goes to h(x).
Unfortunately, there is already a pebble in this position, so this one has
to move to h(h(x)), displacing yet another pebble, and so forth. Any
pebble unaffected by this process simply stays where it is.



Kicking the Can . . . 44

A

B

C



Here Goes . . . 45

Suppose we have a bijection h : A←→ C. We need to concoct a new
bijection H : A←→ B. To this end, define the displacement set

D = {hn(x) | x ∈ A−B, n ≥ 0 }.

In other words, D is the union of all h-orbits of points in A−B.

Define a function H from A to A as follows:

H(x) =
{

h(x) if x ∈ D,
x otherwise.

Essentially, we are hiding the elements of A−B in C, the rest we leave
in place.



Mopping Up 46

Note that D consists of A−B plus part of the range of h, a subset of C.
So the range of H is certainly contained in B.
Now consider an arbitrary point x ∈ B. If x ∈ D, then for some z we
have h(z) = x, so x is in the range of H. If x /∈ D, then H(x) = x and
again in the range.

For injectivity suppose H(x1) = H(x2). If both x1 and x2 are in D, or
both are not in D, it follows that x1 = x2.
So suppose x1 ∈ D but x2 /∈ D. Then H(x1) = h(x1) ∈ D, but
H(x2) = x2 /∈ D, contradiction.

2



Application 47

It is easy to show that the open interval (0, 1) ⊆ R has the same
cardinality as all of R:

f : (0, 1)→ R
f(x) = tan π(x− 1/2).

How about the half-open interval [0, 1) ⊆ R?

This is trivial with Cantor-Schröder-Bernstein: all we need is 2 injections

f−1 : R→ (0, 1) ⊆ [0, 1)
Id : [0, 1)→ R



Hard Labor 48

A direct bijection [0, 1]→ (0, 1]. Ponder deeply.



Cantor: Diagonalization 49

Warm-up:
The number of binary sequences of length n is larger than n.

Yes, yes, we can do this by counting, but ordinary counting does not
work for infinite sets; we need a different approach.

We will prove something more constructive:
Given n binary sequences si, i < n, of length n, there is a binary
sequence t of length n that differs from all of them.

Here goes: define the new sequence t by changing the diagonal sequence
si(i):

t(i) = 1− si(i).

where i < n. Then t differs from all the si in at least one bit, so t ̸= si

for all i < n.



Flipping Bits 50

We get t by flipping each bit along the diagonal of a matrix. Hence the
resulting sequence cannot be a row in the matrix.

s0(0) s0(1) s0(2) . . . s0(n− 1)
s1(0) s1(1) s1(2) . . . s1(n− 1)
s2(0) s2(1) s2(2) . . . s2(n− 1)

...
...

sn−1(0) sn−1(1) sn−1(2) . . . sn−1(n− 1)

In general, it does not matter how we change the element si(i) in t, it
just has to be different. With bits there is only one choice, of course.



The Key Insight 51

This also works for infinite sequences.

Simply replace i < n by i ∈ N and everything works just fine.

Claim
There are uncountably many binary sequences: N→ 2 is uncountable.

Note that |P(N)| = |N→ 2|: a map f : N→ 2 is just a bitvector
(characteristic function) for a subset of N. So we know that P(N) is
uncountable.



The Real Thing 52

To show that R is uncountable, it clearly suffices to show that the open
interval (0, 1) ⊆ R is uncountable. Assume we have an enumeration of
(0, 1), i.e., a list

x0, x1, x2, . . . , xn, xn+1, . . .

that contains each real in (0, 1) exactly once. Since 0 < xi < 1, we have
decimal expansions

xi = 0.xi1xi2xi3 . . .

This representation is potentially ambiguous, so let’s agree that that
there are no trailing infinite blocks of 9s: increment previous digit, and
replace by 0s.

E.g., write 0.1235, not 0.1234999999 . . ..



Contd. 53

Now define digits yj by

yj =
{

3 if xjj = 2,

2 otherwise.

and let y =
∑

yj · 10−j .

Note that y has only decimal digits 2 and 3, and in particular no trailing
9s. Hence 0 < y < 1.

Now suppose y = xi for some i.
Then xi also has only decimal digits 2 and 3, and we must have xij = yj

for all j, clearly contradicting the construction: xii ̸= yi.
2



Cantor II 54

The next task is to show that the cardinality of P(A) is strictly greater
than the cardinality of A.

There is a trivial injection from A to P(A): a 7→ {a}, so |A| ≤ |P(A)|.

So suppose there is a surjection f : A→ P(A) . Think of element a as a
“name” for the set f(a) and define a set

B = { a ∈ A | a /∈ f(a) } ⊆ A.

Since f is surjective, we must have B = f(b) for some b ∈ A. But then
b ∈ B implies b /∈ B, and conversely; contradiction.



Cantor vs. Russell 55

Note that Cantor’s construction is very similar to Russell’s paradox,
surprisingly Cantor never made the transition.

R = {x | x /∈ x }

B = { a ∈ A | a /∈ f(a) }

The existence of R is self-contradictory, but can be proven from the
axioms developed by G. Frege in the late 1800s. We all hope that no
such set can be constructed in Zermelo-Fraenkel set theory.

But there is nothing wrong with B, it just shows that f cannot be
surjective. The existence of B is easy to prove in Zermelo-Fraenkel set
theory; it’s just comprehension.

https://en.wikipedia.org/wiki/Gottlob_Frege


Diagonalization, the Idea 56

Cantor was interested solely in set theory (actually: to use set theory to
explain classical mathematics).

However, the idea to construct a provably new object by starting with a
list of objects, and then modifying object xi in position i carries over to
other areas.

In particular the infamous undecidability of the Halting Problem uses
the exact same idea.

Similar methods are also hugely important in complexity theory.



Quoi? 57

This is really amazing: diagonalization in set theory deals with
cardinality, a concept that appears to have absolutely nothing to do with
computability. In fact, when diagonalization was introduced by Cantor in
1891, no concept of computability even existed; it would take another 40
years for that development.

And yet, diagonalization is a critical tool in computability and complexity.
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