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More Numbers 2

You are all familiar with the standard number systems used in calculus:

Q R C

The difference between these and the integers is that one can perform
division and solve many more equations. In fact, according to the
Fundamental Theorem of Algebra, all non-constant, single-variable
polynomial equations with integer coefficients have a solution over the
complex numbers†.

What are the key properties of these number systems?

Can we axiomatize these structures?

†This is a hard result, even Gauss made a mistake in his 1799 proof.



Axiomatization 3

What would be the ingredients for our putative axioms? Minimally, we
would need

two arithmetic operations plus and times,

two constants zero and one,

possibly an order relation.

And then we have to write down the basic laws that these objects
obey—and hope that the basic rules already capture everything there this
to know. Take “everything” with a grain of salt, we won’t get
completeness of the reals, for example.



Fields 4

Definition
A field is an algebraic structure F = ⟨F ; +, ∗, 0, 1⟩ where the following
axioms hold: associativity, commutativity, neutral elements, inverses,
distributivity.

x + (y + z) = (x + y) + z x ∗ (y ∗ z) = (x ∗ y) ∗ z

x + y = y + x x ∗ y = y ∗ x

x + 0 = x x ∗ 1 = x

∀ x ∃1 y (x + y = 0) ∀ x ̸= 0 ∃1 y (x ∗ y = 1)

x ∗ (y + z) = (x ∗ y) + (x ∗ z)



0 Inverse? 5

One also insists that 0 ̸= 1, so any field has at least two elements.

The additive and multiplicative inverses are usually written −x and x−1

or 1/x in fractional notation. Note the guard x ̸= 0 for multiplicative
inverses.

There is no way around this. For suppose we have some inverse 0−1.
Then

1 = 0 ∗ 0−1 = (0 + 0) ∗ 0−1 = 0 ∗ 0−1 + 0 ∗ 0−1 = 1 + 1

whence 0 = 1 and we have a contradiction.

It is easy to check (white lie) that the usual suspects are all fields:

Q R C



Are There Finite Fields? 6

There are: the modular numbers Zp form a field iff p is a prime.
In particular, there is a two-element field

Z2 = ⟨2; ⊕, ∧, 0, 1⟩

where the operations are “exclusive or” and “and”†.

We can compute a multiplicative inverse in Zp using the extended
Euclidean algorithm. There are also finite fields of size pk for all k ≥ 1,
but these are much, much harder to describe.

Finite fields are hugely important in coding theory, cryptog-
raphy, the theory of algorithms and complexity theory.

†So in this case algebra comes down to logic.



Calculus 7

Perhaps the most important application of the reals is calculus and real
analysis. For this purpose, having a field is not quite enough†.

For example, we define continuity like so:

∀ ε > 0 ∃ δ > 0 ∀ x
(
|x − a| < δ ⇒ |f(x) − f(a)| < ε

)

Theorem (Intermediate Value Theorem, Cauchy 1821)
If the function f(x) is continuous with respect to the variable x between
the limits x = x0 and x = X and if b designates a quantity between
f(x0) and f(X), one can always satisfy the equation f(x) = b for one or
several real values of x between x0 and X.

†Completeness is the central issue, a fact we will ignore here.
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Order and Intervals 9

Cauchy’s result directly requires order, we really need a way to define
intervals:

[a, b] = { x ∈ R | a ≤ x ≤ b }

With these examples in mind, we would like to add two more concepts to
the idea of a field:

order
absolute value

Here are the requisite definitions.



Good Orders 10

Recall from modular arithmetic that Gaussian congruences are interesting
not simply because they are equivalence relation of finite index, but
because they coexist peacefully with arithmetic.

The same applies here: we do not want some random order imposed on
the reals, we want an order that is compatible the arithmetic in the field.

For our purposes, we want a strict total order that has the following two
properties:

(O1) x < y ⇒ x + z < y + z

(O2) 0 < x, y ⇒ 0 < x ∗ y

It is clear that the usual order on Q and R satisfies these properties, we
are just axiomatizing matters.



Ordered Fields 11

Definition
An ordered field is a field F together with a strict order < that satisfies
axioms (O1) and (O2).

The rationals and the reals are uniquely ordered.

We will prove in a moment that neither finite fields nor the complex
numbers can be ordered.

There are some strange fields that can be ordered in different ways, but
we won’t worry about those†.

†Take a course in field theory if you are interested



Positivity 12

Note that
x < y ⇐⇒ 0 < y − x

by (O1), so the order can also be expressed in terms of positive elements.

A set P ⊆ F is a positive set if it satisfies the following conditions:

(P1) x, y ∈ P ⇒ x + y ∈ P

(P2) x, y ∈ P ⇒ x ∗ y ∈ P

(P3) x ∈ P ∨ x = 0 ∨ −x ∈ P

The last condition is meant to be exclusive or: any element is either
positive, zero or negative (x is negative if −x is positive).



Back and Forth 13

So given an order < we can define a positive set by

P< = { x ∈ F | 0 < x }

Conversely, given a positive set P , we can define an order relation by

x <P y ⇔ y − x ∈ P

One can check that this really works as advertised. And, the two
operations are mutual inverses.



Some Facts 14

Claim 1: In any ordered field, 0 < 1.

Proof.
Assume otherwise. Since 0 ̸= 1 and < is a total order, we must have
1 < 0. By (O1), 0 < −1 and, by (O2), 0 < (−1)(−1) = 1, a
contradiction. 2

Claim 2: In any ordered field, 0 ̸= x ⇒ 0 < x2.

Proof.
Since < is a total order and x ̸= 0 we must have 0 < x or x < 0. In the
first case we are done by (O2). In the second case, by (O1), 0 < −x,
and, by (O2), 0 < (−x)(−x) = x2. 2



Finite No Good 15

The first claim implies that no finite field can be ordered.

First note that in any finite field, we must have

1 + 1 + . . . + 1︸ ︷︷ ︸
k

= 0

for some k. The minimal such k is called the characteristic of the field.

But 0 < 1, whence 1 < 1 + 1, 1 + 1 < 1 + 1 + 1 and so on by (O1). By
transitivity, 0 < 1 + 1 + . . . + 1 = 0, a contradiction.



Squares 16

The complex numbers are not an ordered field: there is no ordering of C
that is compatible with addition and multiplication.

By the second claim, non-zero squares are positive in any ordered field.
But in C we have i2 = −1 < 0, a contradiction.

Also note that in the reals we could actually define order in terms of
squares via the positive set

P = { x ∈ R | ∃ z ̸= 0 (z2 = x) }

since every positive real has a square root.

This clearly fails for the rationals.



Absolute Value 17

We can now define the absolute value or magnitude of a field element in
any ordered field:

|x| =
{

x if x ≥ 0
−x otherwise.

Thus 0 ≤ |x| with equality only for x = 0.

Note that z ≤ |z| with equality only for non-negative z.

Multiplication is well-behaved: |xy| = |x||y|.

Lastly, z2 = |z|2.



Warning: Complex Numbers 18

There is a very useful notion of an absolute value, also called modulus, of
a complex number:

|a + ib| =
√

a2 + b2

Geometrically, this measures the distance of the number from the origin.

But: this kind of absolute value is not based on a field order.



Triangle Inequality 19

Proposition
|x + y| ≤ |x| + |y|

Proof.
We have

(x + y)2 = x2 + 2xy + y2 ≤ |x|2 + 2|x||y| + |y|2 = (|x| + |y|)2

Hence |x + y|2 ≤ ||x| + |y||2 and taking square roots yields
|x + y| ≤ ||x| + |y|| = |x| + |y|.

Chasing equality conditions we can see that equality holds in the
proposition exactly when x and y have the same sign or at least one of
them is 0.

2



Completeness 20

For any set A ⊆ R, an upper bound for A is a real b such that

∀ x ∈ A (x ≤ b)

Write UB(z) to mean: z is an upper bound for A. Then b is a least
upper bound for A if

UB(b) ∧ ∀ z
(
UB(z) ⇒ b ≤ z

)

Completeness of the reals means: every subset of the reals that has an
upper bound also has a least upper bound.

This is the reason why calculus is based on the reals, not the rationals.
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Vector Spaces 22

Definition
Let F be an arbitrary field. A vector space over F is an algebraic
structure ⟨V ; ⊕, ·, 0⟩ where the two operations have the format

vector addition: ⊕ : V × V → V

scalar multiplication: · : F × V → V

and the properties listed below.

The vector addition is associative, commutative, has a neutral element 0
and unique inverses.
The scalar multiplication is subject to the conditions

a · (x ⊕ y) = (a · x) ⊕ (a · y)
(a + b) · x = (a · x) ⊕ (b · x)
(a ∗ b) · x = a · (b · x)
1 · x = x



Sloppy Notation 23

We have written vector addition as ⊕ to distinguish it from the addition
in the field. No one does this in the RealWorldTM, one simply writes +
for both. And 0 for 0, and one drops the parens and replaces the
multiplication operators by concatenation.

a(x + y) = ax + ay

(a + b)x = ax + bx

(ab)x = a(bx)

1x = x

In the long run, this is better for one’s sanity, trust me.



Cheap Example 24

Let F be any field, finite or infinite.

Then ⟨F; +, ∗, 0⟩ is a vector space over F.

In other words, we let ⊕ = +, · = ∗ and 0 = 0.
Then all the vector space axioms hold.

OK, this is pretty lame, but hold on.



The Mother of All Vector Spaces 25

Let F be any field, finite or infinite.

Generalizing the last example slightly, consider Fn, the collection of all
sequences over F of length n.
In this context, these sequences are called n-dimensional vectors.
Fn is a vector space over F using componentwise operations:

u ⊕ v = (ui + vi)
a · v = (avi)

0 = (0, 0, . . . , 0)

Exercise
Check that Fn really is a vector space over F.



Longer Vectors 26

Example (Product)

∏
I

F = { x | x : I → F }

is a vector space over F for any infinite index set I.

The point here is that in a standard, finite-dimensional vector space we
use the perfectly natural index set I = [n].

But, all the definitions work just as well if we replace [n] by any infinite
set I, no matter how big. For example, F = I = R makes perfect sense,
and is hugely useful: real functions form a vector space over R.

This is a good sign, our development seems to be quite robust.



Important Variant 27

Example (Coproduct)

∐
I

F = { x : I → F | x finite support }

is a vector space over F for any infinite index set I.

Finite support means that xi ̸= 0 for only finitely many i ∈ I (a property
that is preserved under the vector space operations).

As a consequence, every vector in a coproduct vectors space has a finite
description (as long as the elements of F do).

Alas, we will stick with finite-dimensional Euclidean spaces Rn.



Measuring Length 28

A norm on a vector space is a map ∥.∥ : V → R with the following
properties:

∥x∥ ≥ 0
∥x∥ = 0 ⇐⇒ x = 0
∥ax∥ = |a|∥x∥
∥x + y∥ ≤ ∥x∥ + ∥y∥

Thus, we require the triangle inequality to hold for norms (for absolute
value, it follows from the usual axioms as we have seen).

A norm provides a measure of distance between points in a vector space:

d(x, y) = ∥x − y∥

So the question is: can we find a norm for Rn?



Euclidean Norm 29

Taking inspiration from dimension 2, we could try

∥x∥ =
√

x2
1 + x2

2 + . . . + x2
n

The first three properties of a norm are trivially satisfied, but the triangle
inequality requires a bit of work.

We cannot simply use the squaring trick from the absolute value case
since we are now dealing with vectors, not scalars.

That naturally leads to the question of whether there might be some kind
of reasonable product on vectors in Rn that could be exploited in a proof.



Inner Product 30

It is not at all clear how we might multiply vectors. Here is the axiomatic
approach to the properties we would want from a product
◦ : V × V → R (we will only deal with real spaces†).

symmetry x ◦ y = y ◦ x

linearity (ax + bx′) ◦ y = a(x ◦ y) + b(x′ ◦ y)
positive definiteness x ̸= 0 ⇒ x ◦ x > 0

Note that the combination of symmetry and linearity in the first
argument also produces linearity in the second argument:

x ◦ (ay + by′) = a(x ◦ y) + b(x ◦ y′)

†Other popular notation is x · y or ⟨x, y⟩.



Bootstrapping 31

OK, but how do we concoct such a product?

A key observation is that, by linearity, it suffices to figure out what to do
with unit vectors:

x ◦ y =
∑
i,j

xiyj (ei ◦ ej)

Since we require positive definiteness, a fair guess would be

ei ◦ ej =
{

1 if i = j
0 otherwise.

This attempt produces

x ◦ y = x1y1 + x2y2 + . . . + xnyn

and we can easily check that we really have an inner product.



Geometry 32

Having found a function that satisfies the axioms is nice, but not really
enough: it should make some intuitive sense beyond just having the right
formal properties. In our case, we are in luck.

Leaning on trigonometry, one can check that

x ◦ y = ∥x∥ ∥y∥ cos θ

where θ is the angle subtended by the two vectors x and y.

In particular, x and y are orthogonal iff x ◦ y = 0. The following
classical result follows immediately from this characterization, but we will
give a proof avoiding trigonometry.



Cauchy-Schwartz Inequality 33

Theorem
|x ◦ y| ≤ ∥x∥ ∥y∥

Proof. We may assume y ̸= 0 and define a = (x ◦ y)∥y∥−2.

0 ≤ ∥x − ay∥2

= (x ◦ x) − 2a(x ◦ y) + a2(y ◦ y)

= ∥x∥2 − (x ◦ y)2∥y∥−2

Both steps are justified by unfolding the definition of our norm, and for
the second step we use the definition of a. 2



Norm Triangle Inequality 34

If you are still breathing, we can now tackle the triangle inequality for our
Euclidean norm.

Proposition
∥x + y∥ ≤ ∥x∥ + ∥y∥

Proof.

∥x + y∥2 = (x ◦ x) + 2(x ◦ y) + (y ◦ y)
≤ ∥x∥2 + 2|x ◦ y| + ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥ + ∥y∥2

= (∥x∥ + ∥y∥)2

where the third step is justified by Cauchy-Schwartz. 2
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Generalizing 36

One might wonder whether our Euclidean norm is the only choice for Rn

or whether there are other, geometrically meaningful ways to measure
length and distance. Since

∥x∥ =
(∑

x2
i

)1/2

one just might conjecture that we could use so-called p-norms

∥x∥p =
(∑

|xi|p
)1/p

Note that we have replaced xi by |xi| to ensure positivity.



Unit Disks p = 1, 2, 3, ∞ 37



Norms p = 1, 2, 3, ∞ 38



1-Norm 39

This is also called the Manhattan norm:

∥x∥1 = |x1| + |x2| + . . . + |xn|

It properly describes distance on a rectangular grid.



Chebyshev Norm 40

At the other end of the spectrum we have the infinity norm or Chebyshev
norm or maximum norm:

∥x∥∞ = max
(
|x1|, |x2|, . . . , |xn|

)
One can show that is really is the limit of p-norms as p approaches
infinity.

In terms of a grid walk we would have to add the ability to move
diagonally from one corner of a block to the other (much like a king on a
chess board)



Traveling Salesperson Problem (TSP) 41

Different norms appear for example in computational geometry and
complexity. Here is one famous combinatorial problem that has directly
to do with distances.

Suppose we have an n × n matrix D of non-negative numbers. We think
of D(i, j) as the cost of traveling from location i to location j.

We are interested in cheap closed tours, where by a tour we mean a
permutation π of [n] such that π(n) = 1: we are supposed to travel

1, π(1).π(2), . . . , π(n−1), π(n) = 1

Thus, we start at 1, hit every location exactly once, and return to 1.



Cost 42

The cost of such a tour is the sum of all individual steps:

cost(π) =
∑
i<n

D(π(i), π(i+1)) + D(π(n), π(1))

The goal of TSP is find a tour of minimal cost.

In a sense, this is trivial: we can simply try out all permutations and find
a cheapest one. Alas, in applications n can be several hundred, so the
search would never end in this universe.



Getting Serious 43

Since this is an algorithmic problem, one needs to be a bit more careful
about specifying the input. We said D is a matrix of non-negative
numbers, but that is much too vague: we should insist that the numbers
are rational.

In fact, by scaling properly we can assume the distances are in N.

Here is a particularly simple case: the metric or triangle TSP:

D is symmetric, and
D obeys the triangle inequality: D(i, j) ≤ D(i, k) + D(k, j).

In other words, D behaves somewhat like a table of geometric distances.



Bad News 44

Unfortunately, the Triangle TSP is not much better than the general
version: no polynomial time algorithm (ie., polynomial in n) is known.

In fact, things already spin out of control even when all distances just are
1 or 2. The problem does not require complicated distances to become
unmanageable.

Maybe things become manageable if we constrain things to actual
geometric distances?



Euclidean TSP 45

Say, we assume n points pi in the Euclidean plane, and we define
D(i, j) = ∥pi − pj∥, the ordinary Euclidean distance.

Hold it, hold it. “Points in the plane” sounds good, but we need rational
coordinates. In fact, by scaling, we may as well assume that the points
are all in Z × Z.

Much better, but there still is a problem: in order to find the cheapest
tour, one has to compare expressions of the form

√
a1 +

√
a2 + . . . +

√
ak

for integral ai to compare tours or parts thereof.

This may look trivial, but it is not: the roots are irrational in general, and
it is not known how many digits are needed.



Example 46



Comparing 47

The last two icosahedron tours are both pretty good. To figure out which
is better, one needs to determine the sign of

544 + 5
√

11833 −
√

461401 −
√

462113 +
− 2

√
724645 +

√
1056890 +

√
1058285

The numerical value is about 83.1, so the first, more symmetric tour is
better. Of course, this assumes that the software I used is sufficiently
accurate.



RealWorldTM 48

In actual applications such as routing an Amazon truck, the situation is
even worse: one needs to find not just a cheapest tour, but there are
additional constraints.

For example, one would like the truck to take about the same number of
left and right turns: otherwise the wear on the tires is uneven, and poor
Bezos might miss out on another billion or two. Just think about how
you would even model this additional constraint.

Reasonably good approximation algorithms exist, but that’s about it.



Nearest Neighbor 49

Perhaps the most tempting strategy for Euclidean TSP is to work strictly
locally: start in some random place, then always go to the nearest
untouched neighbor.
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The example shows that this can go wrong, but the error here can be
fixed with a little post-processing.



Circuit Boards 50



1-Norm 51

The drill that produces the holes in the board typically only moves along
the axes, not diagonally.

So to model this situation we need to use the Manhattan norm.

Not to worry, this is just as difficult.
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