MFCS

Modular Arithmetic

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
FaLr 2022

[ary

N

Divisibility

Modular Arithmetic

Rotation

Chinese Remainder

Total Recall: Divisibility

For a,b € Z, a divides b iff 3c € Z (a - c =b).

This is usually written a | b.

Proposition

Note that +1 | a and a | O for all a € Z.
Divisibility is reflexive, transitive and almost antisymmetric.

Lemma (Linear Combinations)
Ifd| aandd|b then d| (xa+ yb) for all z,y € Z.

Quotients and Remainders

Theorem (Division Theorem)

Let b be positive, and a an arbitrary integer. Then there exist integers q
and r such that
a=q-b+r, where) <r <b.

Moreover, the numbers q and r are uniquely determined (quotient and
remainder).

In older literature this is often called the “Division Algorithm,” though no
algorithm is anywhere in sight.

Notation:

r=amodb remainder

qg=adivbd quotient

Actual Algorithm

Suppose both a and b and given in binary, and have thousands of digits.
The data type used to store the bits is an array,

Find a fast algorithm to determine the quotient and remainder.

What is the running time of your algorithm in terms of the number of
digits of the input?

Primes

p > 2 is prime if its only positive divisors are 1 and p.

Lemma

For every n > 2 there is a prime p such that p | n.

Theorem (Euclid, c. 300 BCE)

There are infinitely many primes.

Lemma
If p is prime and p | ab then p | a or p | b.

Sample Proof

The last lemma is easily handled with a forward link to the greatest
common divisor, see below.

Let d = ged(a, p).
If d = p then clearly d divides a.

But otherwise d = 1, hence za + yp = 1 for some integers = and y.

It follows that zab + ypb = b and p divides b.

The Fundamental Theorem

Theorem
Let n > 2. Then there exist distinct primes p1,...,pi such that

— M€l €2 €k
n=py'py> ... P

where e; > 0. The decomposition is unique up to order.

Proof.

Induction using the last lemma to split off prime factors. m|

But beware, finding this prime decomposition seems very hard
algorithmically. This (presumptive) difficulty turns out to be a blessing in
disguise, it is currently exploited in cryptography.

GCD and Euclidean Algorithm

The greatest common divisor is defined by
ged(a, b) = max(d | d divides a,b)

a and b are coprime (relatively prime) if ged(a, b) = 1.

The basic properties of the GCD:

Lemma
e ged(z,0) =x

o ged(z,y) = ged(y, 2)
o ged(z,y) = ged(y, z mod y)

Example

These properties produce an algorithm to compute it the GCD. Typical
run: a = 4234 and b = 4693286.

4234 = 0 - 4693286 + 4234
4693286 = 1108 - 4234 4 2014
4234 =2 - 2014 + 206
2014 =9 - 206 + 160
206 =1-160 + 46
160 = 3 - 46 + 22
46 =2-22+2
22=11-2+0

The table provides a complete proof that ged(4234, 4693286) = 2,
verification comes down to checking the arithmetic.

Linear Combinations 10

The last example suggests to take a closer look at linear combinations
c=zx-a+y-b

where z,y € Z.
Obviously ¢ is divisible by ged(a, b).

More interestingly, we could run through the equations above backwards
and write 2 = ged(a, b) as a linear combination of a and b:

ged(a, b) = 2 = 205068 - a — 185 - b

EEA

Lemma (Extended Euclidean Algorithm)

There exist integers x,y such that
ged(a,b) =x-a+y-b.
These so-called cofactors can be computed along with the GCD.
Trace of the Euclidean algorithm. Wlog a > b > 0.
Ti—o =q; Ti—1+71r; whererg=a,7r1 =0

Hence, r,, = 0 for some n, and r,_1 = gcd(a, b). Define

170:1 yOZO
.%'1:0 y1=1
Ti=Tj—2 —qi " Ti—1 Yi =Yi—2 — qi " Yi—1

A simple induction shows that

ri=a-2; +b-y.

11

Example

i (&} T Yi
— 1233 1 0
— 1000 0 1
1 233 1 -1
4 68 —4)
3 29 13 —16
2 10 =30 37
2 9 73 -90
1 1 -103 127
9 0 1000 —1233

We have

—103 - 1233 + 127 - 1000 = 1 = ged (1233, 1000)

Diophantine Equation 13

We can also think of
a-z+b-y=c
as an equation, we want solutions for z and y.

Again, we clearly need d = ged(a,b) | ¢ for any solution to exist.

We can divide by the GCD and use the extended Euclidean algorithm as
before. But note that the solution is not unique: for any solution (g, yo)
we get infinitely many other solutions of the form

(o +tb/d, yo — ta/d)

where ¢t € Z. In fact, these are all the solutions.

Efficiency of EEA 14

One can implement all the necessary arithmetic in O(k?) steps for k-bit
numbers. In fact addition is only O(k), but for mods and remainders we
need O(k?) steps.

But how often does the while-loop execute? Trivially no more than a > b
times, but that's no good at all.

Note that one must lose one bit at least at every other step. This follows
from
Ti—2 =G Ti—1 + 715

Hence total running time is O(k®) steps for k-bit inputs.
Incidentally, the worst possible input is two consecutive Fibonacci

numbers. In this case, ¢; = 1 at all times, and the algorithm just runs
backwards through the Fibonacci numbers.

p-adic Valuations 15

Definition
Let p prime. The p-adic valuation of an integer n # 0 is the largest e
such that p° divides n, in symbols v,(n); we set v,(0) = co.

vy(ab) = vp(a) + vp(b)
alb <= Yp(vy(a) <vy(b))

ng a, b Hpmm(”p(a) wwp(b))
p

Alas, the last formula does not yield an efficient way to compute gcds: we
have no good way to produce the prime decomposition of the numbers.

The Lattice View 16

The natural numbers with division (N, |) form a so-called lattice: a
partial order where any two elements have a join (supremum) and and a
meet (infimum).

In this case, the join is simply the least common multiple, and the meet
is the greatest common divisor.

Taking an algebraic perspective, one can think of a structure (A, L,)
with two binary operations where

@ LI and and N are associative and commutative

@ absorption holds:

zU(Ny) ==z zN(zUy) ==

https://en.wikipedia.org/wiki/Lattice_(order)

Divisor Lattice

A good way to visualize a divisor lattice is to draw a little diagram like
this one.

17

18

148176

Exercises 19

Exercise
Verify that (N,lem, ged) really forms lattice.

Exercise

How are lcm and ged expressed in the picture of the divisor lattice of 307

Exercise

How is the structure of prime divisors of 148176 = 243373 expressed in
the picture of the divisor lattice?

2 Modular Arithmetic

Odds and Evens 21

Distinguishing between even and odd integers may sound trivial, but it is
often quite useful. Here is a simple example.

Suppose we have a polynomial with integer coefficients

px)=a-2°+b-2°+c-x+d

Claim
If both p(0) and p(1) are odd, then p(z) # 0 for all integers .

Here is a trick to prove this: it suffices to show that p(z) is always odd.
“Suffices” sounds weird, this is actually a stronger assertion.

Picture

Careful, though, there

-5+

is a root over R, just not an integral one.

22

Even/Odd Arithmetic

To do this, we need to understand how the even/odd classification
interacts with arithmetic. No problem.

We write e for even, and o for odd. Here are the Cayley tables for
even/odd addition and multiplication:

+ e o e o
e e o ele e
oo e ole o

It follows that n even (odd) implies n* even (odd) for all & > 1. So we
can eliminate higher-degree terms in the polynomial.

So, now we are dealing with the linear polynomial (a + b+ ¢)z + d.

23

The Argument

First note that p(0) = d and p(1) = a + b+ ¢ + d are both odd.

Case 1: So for even x we get

ple)=(a+b+c)-e+o=0

Case 2: For odd x we have

plo)=(a+b+co+o=e-0+0=o0.

In both cases p(x) is odd, done.

24

Princeps Mathematicorum

Carl Friedrich Gauss, 1777-1855.

25

Modular Arithmetic

Fix some positive modulus m. We can define an equivalence relation =,,
on Z as follows:

T =,y < mdivides z — vy

We say that x is congruent to 4y modulo m.

Notation: we usually write
x=y (modm)
instead of = =,, y. This looks more algebraic and turns out to be more

convenient in a lot of arguments.

As usual, equivalence classes are expressed by brackets: [z] or [x]=

m "

Don't confuse this with [n] = {1,2,...,n}.

26

Two Notations 27

Recall: for a given modulus m, a mod m denotes the remainder function,
a map on the integers:

modm:Z — {0,1,...,m—1}

The kernel relation of this function is none other than =,,,.

On the other hand, the notation
a=">b (modm)

indicates that a and b are congruent modulo m. Essentially this says: do
not interpret the equation over Z, but over a different algebraic structure,
the modular numbers, that we will introduce shortly.

Congruences 28

There are lots of equivalence relations on the integers, but ours is
particularly interesting since it coexists peacefully with addition and
multiplication (this is the meaning of congruence in algebra in general).

Here is the critical idea: we can define arithmetic on the equivalence
classes to obtain a new algebraic structure Z,,, of modular numbers.

[z] + [y] = [z + ¢]
[z] - [y] = [z - y]

A potential problem with this type of definition is that it needs to be
well-defined: we must be able to change the representatives without
breaking the identities.

More on Congruences 29

So we have to check the following:

r=x,y=19y (mod m)
implies

r+y=a"+vy (mod m)

z-y=a"-y (modm)

This is a huge restriction compared to arbitrary equivalence relations.
There are uncountably many equivalence relations on Z, but it turns out
that all non-trivial congruences are Gaussian congruences.

Proof 30

Let’s check for addition. We have to show that

/ /

r=2',y=1y (modm) implies z+y=2"+7 (modm)

letz=qgm+r, 2’ =¢m+r,y=pm+s,y =p'm-+s. Then
zty=(¢+tpm+r+s ' +y =@ +p)m+r+s

and our claim holds.

Multiplication is entirely similar.

Remainders 31

We could express the critical arithmetic properties also in terms of the
remainder function like so:

(z +y) mod m = ((z mod m) + (y mod m)) mod m

(z - y) mod m = ((x mod m) - (y mod m)) mod m

Note that this is a bit clumsy, we have to remainder twice (at least in
general).

All Congruences are Gaussian 32

Claim: Let = be a non-trivial congruence on the integers. Then = is a
Gaussian congruence.

Proof. Leta <bsuchthata=b. Then0=a—a=b—a. Let m >0
be the least such difference and note that mZ C [0].

We claim that [0] = mZ.

Suppose otherwise and let 0 = b where b ¢ mZ. Let p such that
pm < b < (p+1)m. Then 0 < b < m, but b= 0, contradicting our
choice of m.

It follows that [a] = a + mZ and we are done. O

Living Dangerously 33

Careful notations that keep track of lots of details like

[2]=,, [z, +m m Az,
are perfectly correct, but they get very tedious in actual use.

So, if it is clear from context what we mean, we may drop all these
decorations and just write x instead of [z]=, . Similarly we just use +
and - for addition and multiplication of modular numbers.

In effect, we load a different math library and work in
Zm = ({0,1,...,m—=1},+,")

If you feel nervous about this initially, add brackets and subscripts to your
heart's content.

34

Cayley Tables

Example (Z5)

3
2

1
4

0 2 4

1

0/0 0O O O O

01 2 3 4
2 3 4 0

1
2

1

3 4 0

310 3

1

3 4 0

410 4 3 2

1

3

Cayley Tables 35

Inevitable Clock Problem 36

A clock (which functions accurately) shows the hour hand positioned at a
minute mark, and the the minute hand two marks away. What time is it?

Really have 60 possible positions. Equations:

m=h=£2 (mod 60)
m = 12h (mod 60)

By exploiting the congruence properties it follows that
11h =42 (mod 60)
multiply by 11:

h=+22 (mod 60)

It's 4:24 or 7:36.

The Real Problem 37

The real question:
How does one solve equations modulo m?

Since there are only finitely many modular numbers one could, in
principle, use brute force. Alas, for even slightly large moduli this is not a
realistic option, we need some theory.

We know how to handle linear equations axz = ¢ (mod m), but life
becomes already fairly difficult for quadratic ones. The good news: one
can exploit this computational hardness for cryptography.

Simplifying Equations

Proposition

Let ab = ac (mod m) and m' = m/ ged(a, m).
Then b = ¢ (mod m’).

In particular when a and m are coprime we can simply drop the a.

Exercise

Use p-adic valuations to prove the proposition.

38

Inhomogeneous Equations 39

First an important special case.

Lemma
The equation
a-z=1 (modm)

has a solution if, and only if, a and m are coprime.
If a solution exists it is unique modulo m.

Proof.
A solution means that ax — 1 = ¢m, so a and m must be coprime.

In the opposite direction use the extended Euclidean algorithm to
compute cofactors ax + my = 1.

Multiplicative Inverses

The situation in the lemma is very important.

The solution z such that az =1 (mod m) is called the multiplicative
inverse of a (modulo m).

Notation: a~! (mod m).

Example

m = 11.
z 1 2 4 5 6 7 8 9 10
-1 1 6 39 2 8 7 5 10
Note that 10 = 10~ (no surprise, really: 10 = —1).
So 1/2 =6 (mod 11).

3
x 4

Euler’'s Totient Function

The collection of all modular numbers that have a multiplicative inverse
is usually written Z}, and called the multiplicative subgroup.

Definition (Multiplicative Subgroup)

Zry, ={a€Zp|egedla,m)=1}

Definition (Euler’'s Totient Function)

The cardinality of Z, is written ¢(m).

41

Some Values 42

Here are the first few values of ¢

1,1,2,2,4,2,6.,4,6,4,10,4,12,6,8,8, 16,6, 18,8, 12, 10, 22, 8, 20, 12, 18,

12,28,8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16,42, . . .

Looks complicated.

It is certainly far from clear what the next value would be.

Plot

400 -

300

200

100 -

400

43

Computing the Totient Function 44

Obviously we can compute ¢(n) by brute force, but that's a white lie:
what if n has 1000 digits?

Here is a trick: we can compute ¢(n) if we know the prime factorization
of n:

o For p prime p(p) =p —1 and (p*) = (p — 1)p*~".
e For m and n coprime, p(mn) = p(m)e(n).
Hence, given the prime decomposition
n=py'py ... pit
we can compute the totient function like so:

ekfl

e(n) = (p1 — 1)p§* H(p2 — 1)ps> " ... (pr — 1)p5,

Not so fast ...

Note the hedge: “given the prime decomposition”

Getting the decomposition requires factorization, and that is a difficult

operation and presumably computationally hard in some technical sense.

As a consequence, it is not clear how to compute p(n) efficiently.

In fact, the two problems are computationally closely related. Some
cryptographic schemes depend on the totient function being hard to
compute.

45

Inhomogeneous Equations, Il

Lemma

In the general case
a-xz=c (modm)

we have a solution if, and only if, gcd(a, m) divides c.

Moreover, the number of solutions is gcd(a, m).

Exercise

Prove the general case.

46

Modular Arithmetic and Primes

When p is prime the structure of Zj is particularly simple:

Z5=1{1,2,....,p—1}

As a consequence, we can solve all equations ax = b (mod p) as long as
a # 0 (mod p).

Here are some classical results concerning prime moduli.

Note that (p—1)! =[], .. « for p prime.

T €Ly

47

Wilson’s Theorem 48

Theorem (Wilson's Theorem)

p is prime if, and only if, (p — 1)! = —1 (mod p).

Proof.
First assume p is prime, wlog p > 2. We can pair off a € Z; and
—1 *
a=" € Zy,.
a and a~! are always distinct except in the case a = £1: the quadratic

equation 22 = 1 (mod p) has at most two solutions since
22 —1=(x+1)(z—1).

For the opposite direction assume p fails to be prime, say, ab = p for
1 < a,b <p. But then (p —1)! and p are not coprime whereas —1 and p
are coprime, contradiction.

O

Food for Thought 49

You may have heard that primality testing is algorithmically challenging.

There is an amazing polynomial time algorithm, using mostly high school
arithmetic, but, sadly, it is useless in practice.

Currently, all usable primality tests involve randomization.

Question:
Why can’t we use Wilson's theorem for a fast primality test?

Little Fermat

Theorem (Fermat's Little Theorem)

If p is prime and coprime to a, then a?~* =1 (mod p).

Proof.
Consider the map @ : Zy — 7y, a(r) = ax.
a is a bijection, so

—aP! = qaP7? Hx: H ar = Ha(x): Hx:—l (mod p)

(L‘EZ; (L‘EZ; (EEZ; QL‘EZ;

Here we have used p(p) = p — 1. Done.

50

3 Rotation

Application: Rotating Arrays 52

Here is a simple algorithm question: figure out how to rotate an array of
length n by s places, say, to the left.

Problem: Rotation
Instance: An array A, a positive integer s.
Solution: Rotate A by s places.

This is entirely trivial if we simply copy some of the elements to a second
array first.

This approach is linear time, but requires extra memory, up to n/2.

Can we do better?

Forcing Constant Space 53

It is clear that we can get liner time/constant space if we rotate the array
by only one place: just remember ag and move everyone over.

Constant space here means: constant amount of extra space, we do not
charge the algorithm for the original array.

Then just repeat s times, done.

No good at all: space is constant, but time is now quadratic.

Reversal 54

One method that is absolutely not obvious is to exploit reversal.

Clearly, an array can be reversed in linear time/constant space: just move
two pointers from both ends towards the center.

By reversing twice (in the right way) we get rotation:

rev(A,0,s);rev(A, s,n);rev(A,0,n)

Here rev(A, k,) means: reverse that part ag,ak+1,...,a¢—1, as usual
with 0-indexed arrays.

Improvements? 55

The last method is linear time and constant space. But we can still
quibble: it moves every element in the array twice.

Could we move the elements only once? After all, we know exactly where
they are supposed to go.

Something like
apg < Qg < Q95 < A3 < ...
a sequence of displacements (we have to remember ag which gets

clobbered right away).

Could this possibly work? If so, exactly how? What does ... actually
mean?

Iterating Addition

Addition on Z,, is fairly straightforward, and we can easily describe the
effect of repeated addition.

Say, we define the additive function

«: Ly — Ly
r —— x+smodm
Question: What would the orbits
orb(a; @) = a,a(a),a?(a),...,a"(a),...

look like?

56

Example 57

Let m = 20 and s = 6. Then there are essentially two orbits: infinite
repetitions of the following basic blocks:

0,6,12,18,4,10,16,2,8,14
1,7,13,19,5,11,17,3,9,15
The hedge “essentially” covers the case where we start at different

points. As sets, these orbits simply are the even and odd numbers
between 0 and 19. By contrast, s = 11 produces a single repeating block

0,11,2,13,4,15,6,17,8,19,10,1, 12, 3,14, 5, 16,7, 18,9

General Case 58

The two examples are no coincidence: « is injective, so all the orbits
must be repeating blocks, cycles of elements that repeat forever.

Moreover, since a(z) + y = a(x 4+ y) (mod m) all the cycles are just
rotations of each other and it suffices to understand the single orbit
orb(0,).

So we need the least k£ > 0 such that ks =0 (mod m).

We know how to do this: k = m/ ged(s, m).

Proposition

« has ged(s, m) distinct orbits, each of length m/ ged(s, m).

And Rotation? 59

This means that we can concoct an algorithm that uses two nested loops:

@ The outer loop runs through ged(s,m) rounds.
@ Inround r, 0 < r < ged(s,m), we displace a, by a4, and so on,
for m/ ged(s,m) elements.

Each array element is moved only once, and into its final position.

Exercise
Implement this rotation method. Compare to the reversal method.

4 Chinese Remainder

Multiple Linear Equations

How about a system of linear equations, with several moduli:

a;x =b; (mod my) wherei =1,...,n

We know how to simplify this system a little bit: for a solution to exist
we need that ged(a;, m;) divides b;.

H H !/ N !/ / /!
So we get equivalent equations a;x = b; (mod m;) where a; and m; are
coprime.

But that is equivalent to « = ¢; (mod m/}) for some appropriate ¢;.

61

Multiple Linear Equations, Il 62

So we only have to deal with the situation

x=a; (modm;) i=1,...,n

Tricky in general, but for coprime moduli easy. We only consider n = 2.

Let m = mimso and define the double remainder function

f 12wy — Ly X L,

f(@) = (x mod mq, x mod my)

Claim

f is injective and hence bijective.

Proof 63

To see this, suppose f(z) = f(z'), where 0 < x < 2’ < m. Then
o —x= qimi = qz2ma.
But my and my are coprime, so m | ' — x and therefore x = 2.

Since domain and codomain of f both have cardinality m, f must be a
bijection by General Abstract Nonsense.

Hence we can solve © = a (mod m) and = b (mod my): let
T = fﬁl(aa b)

Great. But how do we find the x computationally?

CRT Example

Let m; = 3 and my =5, so m = 15.

Here is the canonical map f : Zi5 — Z3 X Z5 ,
f(x) = (x mod 3,z mod 5).

0 (0,0 8 (2,3)
1 (1,1) 9 (0,4)
2 (2,2) 10 (1,0
3 (0,3) 11 (2,1)
4 (1,4) 12 (0,2)
5 (2,0) 13 (1,3)
6 (0,1 14 (2,4)
7 (1,2)

By table lookup, the solution to x =2 mod 3, = 1 mod 5 is
r=f"1(2,1) = 11.

EEA to the Rescue 65

A better method is to use the EEA. Compute the cofactors:
ami + fmy =1

Then

whence

f(bamy + afms) = (a,b)

So the solution is x = b - amy + a - fms.

CRT Example Il 66

As we have seen, the solution to
z = 2mod 3 z=1mod5

isx =11.

Here is the computationally superior solution: determine cofactors
(-=3)-34+2-5=1
which produce a solution

r=1-(=3)-34+2-2-5=11

Chinese Remainder Theorem 67

Our result also holds for more than 2 equations (and is very old).

Theorem (CRT)

Let m;, i =1,...,n be pairwise coprime. Then the equations
x=a; (modm;) i=1,....,n

have a unique solution in Z,,, m = mims...my,.

This follows from repeated application of the solution for n = 2 since my
and mo ... mgo are also coprime.

Computation 68

How do we compute the solution for n > 27 We could use the method
for n = 2 recursively, but that is a bit tedious. Here is a better way.

Define
¢ =m/m;
so that ¢; =0 (mod m;), ¢ # j, but ¢; and m; are coprime. Use EEA to

find inverses
a;c; =1 (mod m;)

Then
T = a101C1 + a202C2 + ... Ay Cp (mod m)

A Generalization

In general, a solution may exist even if some of the moduli are not
coprime. This is expressed in the following generalization’.

Theorem (Generalized CRT)

The equations
x=a; (modm;) i=1,....,n
have a solution if, and only if, for all i # j:
a; = a; (mod ged(m;, m;))

The solution is unique modulo m = lem(my, ma, ..., my,).

TThis is the kind of result that you might want to be aware of, but there is no
need memorizing it in detail.

69

Application: Large Numbers 70

Suppose you have a 64-bit architecture, but you need to compute with
100-bit numbers.

A bignum library is overkill, but we can fake 100-bit numbers relatively
cheaply:
@ find two primes p and ¢, each 60 bits long,

@ compute in Z, x Zg, using built-in arithmetic for each component.

The computation can involve many steps, we always keep our numbers in
two-component form, each using 64 bits. Only in the end will we convert
back to a single 100-bit number.

And the Primes?

There is an old result by Chebyshev that provides a lower bound for the
number of k-digit primes (primes in [2~71 2% —1]).

72 1) 9 (21 —1)

8In(2F —1) 8In(2F-1 —-1)

For example, for k = 100 we get at least 5.61 x 1027 primes. The length
of the interval is about 6.34 x 102%°.

So we can pick a number at random and check for primality. If it fails,
pick another one or start searching starting at the first number.

71

	Divisibility
	Modular Arithmetic
	Rotation
	Chinese Remainder

