
MFCS

Special Relations

Klaus Sutner
Carnegie Mellon University
Fall 2022

1 Equivalence Relations

2 Equidecomposability

3 Orders

Generalizing Equality 2

Equality is one of the most important relations. Clearly, equality is
reflexive, symmetric and transitive:

x = x,
x = y implies y = x, and
x = y, y = z implies x = z.

It is natural to consider weaker versions of equality: coarser relations that
maintain these three properties.
These relations formalize the notion of two objects being “the same” in
some sense – without necessarily being identical.

Equivalence Relations 3

Definition
A square relation ρ on A is an equivalence relation if ρ is symmetric,
reflexive, and transitive.
Suppose ρ equivalence relation. The equivalence class of a ∈ A is:

[a]ρ = { x ∈ A | a ρ x }.

A/ρ = { [a]ρ | a ∈ A } is the collection of all such classes, the quotient of
A by ρ. The cardinality of A/ρ is the index of ρ.

Recall that for a binary relation ρ on some set A we have
property ∀ x , y, z ∈ A
reflexive x ρ x
symmetric x ρ y ⇒ y ρ x
transitive x ρ y ∧ y ρ z ⇒ x ρ z

Examples 4

Here is a list of equivalence relations together with their domains.

equality, any set A

same weight, dumbbells
same parents, humans
same cardinality, sets
same prime factors, naturals
same dimension, matrices
equidecomposability, polygons
same-input-output is an equivalence relation on programs

Equidecomposability is also called scissor equivalence: cut up a polygon
into finitely mnay pieces (wlog triangles), reassemble them to form a new
polygon. See below for a discussion.

The Classic Example 5

Congruence modulo m on the integers.

x = y (mod m) ⇐⇒ m divides x − y

Is an equivalence relation on Z where

[a] = . . . , a − 2m, a − m, a, a + m, a + 2m, . . .

Note that the equivalence relation (mod m) has index m.

This simple equivalence is the foundation for a lot of cryptographic
schemes, including RSA.
Was first studied in great detail by C. F. Gauss (1777–1855) in his work
on number theory.

Equivalence Classes 6

What can we say about equivalence classes?

The equivalence classes of IA and UA are trivial:

{a} = [a]= and A = [a]UA

In general, we always have
a ∈ [a]ρ

by reflexivity.

Usually write [a] instead of [a]ρ unless there is any danger of confusion.

Disjoint Classes 7

The following dichotomy is the single-most important property of
equivalence classes.

Lemma
Let ρ be an equivalence relation on A. For all a, b ∈ A:

[a] = [b] or [a] ∩ [b] = ∅.

Proof.
If c ∈ [a] ∩ [b], then by symmetry for any z ∈ [a]:

z ρ a ρ c ρ b

Hence z ∈ [b] by transitivity. But then [a] ⊆ [b].

By a symmetric argument, [b] ⊆ [a], done. 2

Partitions 8

Definition
A partition of a set A is a set P ⊆ P(A) of subsets of A such that

X ̸= ∅ for all X ∈ P ,⋃
P = A, and

X ̸= Y ∈ P ⇒ X ∩ Y = ∅.
The sets X ∈ P are called the blocks of the partition.

This is really just different terminology, not a new idea: a block is
nothing but an equivalence class.

By the lemma, the classes form a partition.

Same Idea 9

Lemma
Equivalence relations correspond exactly to partitions.

Proof.
If ρ is an equivalence relation on A the equivalence classes [a] of ρ
produce a partition by the last lemma.

Now let P be a partition of A. Define

x ρ y ⇐⇒ ∃ X ∈ P (x, y ∈ X).

Clearly ρ is reflexive and symmetric.
Transitivity follows from the lemma. 2

Functions and Equivalence Relations 10

A closer look at the list of examples above shows that almost all our
equivalence relations are based on measuring some particular aspect of an
object, and declaring two objects to be equivalent if the measurements
come out the same.

In other words, they are of the form

x ρ y ⇐⇒ f(x) = f(y)

for some suitable function f : A → B .

Kernels 11

Definition
Let f : A → B be a function. Define the kernel relation of f by

x ρ y ⇐⇒ f(x) = f(y)

The kernel relation is usually written Kf or ker(f).

It is easy to check that ρ is an equivalence relation on A.

Example
Let f : Z → Z , f(x) = x mod m. Then Kf is congruence modulo m.

Kernels Everywhere 12

Question:
Could every equivalence relation already be a kernel relation?

In other words, given an arbitrary equivalence relation ρ on A, can we
produce a function f : A → B such that ρ = Kf .

If we don’t care much about the codomain this is easy:

f : A −→ P(A)
x 7−→ [x]

Correct, but uncomfortable. Power sets are huge, and should be avoided
whenever possible.

Better Kernels 13

Theorem
Every equivalence relation ρ on A is a kernel relation.
In fact, we can choose a function f : A → A such that Kf = ρ.

Proof.
We have to produce a function f : A → A such that ρ = Kf .
For each equivalence class [x]ρ pick one representative x0 ∈ [x]ρ.
Set f(z) = x0 for all z ∈ [x]ρ.

2

A Minor Foundational Problem 14

But, there is a small problem: how do we actually pick x0 ∈ [x]?

If [x] ⊆ A is just an abstract set, there is no mechanism to select x0.

As B. Russell pointed out, given an infinite collection of pairs of shoes
one can select one from each pair; given an infinite collection of socks
one is stumped.

Choice 15

But, we have the celebrated Axiom of Choice.

Consider the partition P ⊆ P(A) corresponding to ρ.
By (AC), there is a choice set C:

∀ X ∈ P (|X ∩ C| = 1).

Hence we can define

f(x) = y iff x ρ y ∧ y ∈ C

It is easy to check that f really is a function and that ρ = Kf .

Data Structure Angle 16

For computational purposes, we may as well assume that A = [n].

By the theorem, we can represent any equivalence relation on A as a
map f : A → A : in other words, by a plain array.

And there is an obvious answer on how we should pick the representative:

f(x) = min
(

z ∈ [n] | x ρ z
)

This is representation is used in a number of algorithms, in particular
minimization of finite state machines.

Chess 17

Consider the chess board C = [8] × [8].

For each piece, we can define a move relation ρ on C by:

(x, y) ρ (x′, y′) iff the piece can move from square (x, y) to (x′, y′) in a
single move. We write ρ⋆ for the relation: can move in a sequence of
single moves.

For example, for a knight the relation can be defined like so:

(x, y) ρ (x′, y′) ⇐⇒
(
|x − x′| = 1 ∧ |y − y′| = 2

)
∨(

|x − x′| = 2 ∧ |y − y′| = 1
)

Knights 18

Reachable Squares 19

From the pictures, one can “see” that ρ⋆ =
⋃

i≤6 ρi.

Claim
ρ⋆ is an equivalence relation and has exactly one equivalence class. .

The same for a rook, king or queen.

But for a bishop there are two equivalence classes: the black squares and
the white squares.

Exercise
How many equivalence classes for a pawn? Only consider the basic move
(i, j) → (i, j + 1), no conversion. What’s wrong?

Boolean Matrices 20

Consider as carrier set the collection of all binary lists of length 6
(organized in natural order). Here is a picture of the relation “list x has
the same number of 1’s as list y.
Note that by definition this is an equivalence relation.

The picture clearly shows reflexivity and symmetry. But how about
transitivity?

Reordering the Carrier Set 21

Transitivity is just about impossible to see from the last picture.
But, if we reorder the carrier set so that equivalent elements are all
consecutive, the picture becomes very clear.

Exercise
What are the sizes of these blocks?

Reordering 22

Picture 1 uses the carrier set in natural order, but in picture 2 the carrier
set is reordered so all elements of a block in the equivalence relation are
contiguous.

natural reordered
000000 000000
000001 111111
000010 000001
000011 000010
000100 000100
000101 001000
.
111101 110010
111110 110100
111111 111000

The important point here is that the relation is unchanged, only its
representation in terms of the Boolean matrix has changed.

1 Equivalence Relations

2 Equidecomposability

3 Orders

Equidecomposability 24

Here is a much more interesting equivalence relation.

Definition
Two polygons P and Q are equidecomposable if P can be cut up into
finitely many triangles which can be reassembled to form Q.

We will not give a precise definition of what we mean by reassemble and
appeal to common (geometric) sense.

Equidecomposability is also called scissor equivalence.

It’s an Equivalence 25

Lemma
Equidecomposability is an equivalence relation.

Reflexivity and symmetry is obvious, but transitivity is not.

Suppose we can cut up P to obtain Q, and we can cut up Q to obtain
R.

Why should we be able to cut up P to obtain R directly?

Picture Proof 26

Given two triangulations of a polygon, construct a finer one: triangulate
the polygonal regions produced by intersection.

And Kernels??? 27

We have shown that any equivalence relation is already a kernel relation.

What is the natural kernel function for equidecomposability?

It turns out to be area, but that is far from obvious.

A Challenge 28

The square on the right is
√

5 by
√

5, so both polygons have area 5.

Exercise
Show that the two polygons are equidecomposable.
What is the least possible number of cuts?

Wallace-Bolyai-Gerwien 29

It is clear that any two equidecomposable polygons must have the same
area: cutting them up and reassembling the pieces does not change the
area†. But it is somewhat surprising that the opposite direction also
holds‡.

Theorem (Wallace-Bolyai-Gerwien Theorem)
Let P and Q be two polygons of equal area. Then P and Q are
equidecomposable.

We sketch the proof below. It is an excellent exercise to turn this into a
real proof.

†But consider the Banach-Tarski construction to double a sphere.
‡In other words, area is a kernel function

Step 1 30

To prove the Wallace-Bolyai-Gerwien theorem it suffices to show that
every polygon P is equidecomposable with a square: there is exactly one
square for each area. Since we can triangulate any polynomial, we start
with triangles.
Here is a method to convert triangles to rectangles of equal area:

Step 2 31

In the second step we convert rectangles to squares.
This requires that the longer side of the rectangles is ≤ 4 times the
shorter one. What if not?

Step 3 32

b a

c

a
b

Lastly, we have to add squares and produce new squares. We exploit
Pythagoras’s theorem: a2 + b2 = c2.

1 Equivalence Relations

2 Equidecomposability

3 Orders

Orders 34

The relations ≤ on N, ≤ on R and ⊆ on P(N) are similar in a sense,
they organize the elements of the domain into “smaller” versus “larger”
elements.
What are the crucial properties that make them similar?

Definition
Let ρ be a relation on A.
ρ is a preorder (or quasi-order) if it is both reflexive and transitive.
ρ is a partial order if it is a preorder and antisymmetric.
ρ is an order (or total order or linear order) if it is a partial order and all
elements of A are comparable with respect to ρ:

∀ x, y ∈ A (x ρ y ∨ y ρ x).

Strict versus Reflexive 35

Often it is more convenient to consider the strict (i.e. irreflexive) version
of an order, obtained by setting

x ρ′ y ⇐⇒ x ̸= y ∧ x ρ y.

Notation: ≤ versus <, ⊆ versus ⊂. One sometimes refers to the reflexive
versions as weak orders. Similarly we denote the converse of an order by
flipping the symbol around: ≥ and > versus ≤ and <.

Thus, a strict preorder is any irreflexive and transitive relation. Note that
any such relation is automatically asymmetric.
A strict total order has the additional trichotomy property:

∀ x, y ∈ A (x ρ y ∨ x = y ∨ y ρ x)

Posets 36

Another piece of terminology: a structure

⟨A, <⟩

consisting of a set A and a strict partial order < (or a weak version) is
often called a poset.

This is mostly an acknowledgment that partial orders are so important
that one should have a nice, compact, generally accepted name for them
(just like groups or fields).

The study of posets has turned out to be of major importance for the
semantics of programming languages.

Examples 37

The usual order relations on numbers are total orders.

Subset-of and divides are partial orders.

Ordering polynomials by their degree produces a preorder.

Cardinality of a set is a preorder (and has full comparability).

Lies-north-east-of in the plane is a partial order.

Lexicographic order on words is a total order.

The substring order is a partial order on strings:
x ⪯ y ⇐⇒ ∃ u, v (y = uxv).

The element relation ∈ is a total order on the class of ordinals but
only a partial order on the class of all sets.

Ordering Pairs 38

A standard problem is to lift a given order ≤ on A to A × A. One
plausible definition is

Definition
The product order of ≤ with itself is defined by

(x, y) ≤2 (x′, y′) ⇐⇒ x ≤ x′ ∧ y ≤ y′.

On the plane R × R this is the “north-east-of” relation. Thus, the
product order is partial, even though ⟨R; ≤⟩ is a total order. Can we
manufacture a total order? How about

(x, y) � (x′, y′) ⇐⇒ x ≤ x′ ∨ (x = x′ ∧ y ≤ y′).

Exercise
Show that � is indeed a total order.

Ordering Sequences 39

It is slightly harder to order all sequences over A, not just pairs.

The usual order on characters a < b < c < . . . < y < z can be lifted to
words over this alphabet.

Recall that we write |u| for the length of a sequence u.

Definition
Consider two sequences u and v over A.

1 Lexicographic Order (Dictionary Order)
u ≺ v lexicographically if u is a proper prefix of v or if u = xay,
v = xbz and a < b, where x, y, z are sequences, a, b ∈ A.

2 Length-Lex Order
u ≺ v in the length-lex order if |u| < |v| or |u| = |v| and u precedes
v lexicographically.

3 Length Order
u ≺ v in the length order if |u| < |v|.

Lex Orderings 40

Lexicographic order and length-lex order are bonified total orders on finite
sequences, but length order is only a preorder.

On words over the alphabet {0, 1}, length-lex order produces

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .

This is crucially important for induction arguments: we finish off all
words of length k before working on length k + 1.
But lexicographic order for these few words would be

ε, 0, 00, 000, 001, 010, 011, 1, 11

This is much less natural if one tries to systematically work through these
words.

Lexicographic order is used in the C++ library STL to overload
operator< for stacks.

	Equivalence Relations
	Equidecomposability
	Orders

