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Beyond Functions 2

So far, we have introduced

sets functions induction/rectypes naturals

as our basic mathematical objects.

This already covers quite a bit of ground, but there is one glaring
omission: general relations between objects.

We can think of arbitrary relations as a generalization of functions: we
give up on totality and single-valuedness and just focus on pairs (a, b) of
objects.



Typical Examples 3

divisibility relation on natural numbers,
less-than relation on integers,
greater-than relation on rational numbers,
the “attends course” relation for students and courses,
the “is prerequisite” relation for courses,
the “is a parent of” relation for humans,
the “terminates on input and produces output” relation for pro-
grams and inputs and outputs.



Binary Relations 4

The number of things being related to each other could be any k ≥ 0,
but the most important case is k = 2; we will focus on this case. The
definition is essentially the same as for functions.

Definition
A binary relation ρ from A to B is a triple ρ = ⟨R, A, B⟩ where
R ⊆ A × B.
A is the domain, B is the codomain, and R is the graph of ρ.

Just as for functions we write ρ : A → B .

For binary relations it is often convenient to use infix notation x ρ y
rather than prefix notation ρ(x, y) or the set-theoretic (x, y) ∈ ρ.



Endorelations 5

An important special case arises when the domain and codomain are the
same.

Definition
An endorelation or a relation on A or a homogeneous relation is a binary
relation with the same domain and codomain A. The domain is also
called the carrier set or underlying set of the relation.

As a prime example for an endorelation consider equality =. Having the
same domain and codomain is really essential here.



Relations vs. Functions 6

The concept of a relation is no doubt very useful, but does it really
expand our vocabulary? Is it indispensable?

Logically, no. The reason is that we can express relations as
Boolean-valued functions. Given a relation ρ : A → B , consider the
characteristic function

χρ : A × B → 2 χρ(x, y) = [x ρ y]

Here we are using Knuth’s bracket convention again: [x ρ y] = 1 if x ρ y
holds, and 0 otherwise.

We could replace ρ everywhere by χρ without any loss of expressiveness.



Bullshit 7

Logically that is correct, but for humans, psychology and cognitive
harmony is just as important as pure logic. Writing

χ<(2, 5) = 1 instead of 2 < 5

leads to madness.

It took centuries to develop the notation system used in math today, we
better not mess it up.

Do not waste brain cycles.



Digression: Visualization 8

As long as domains and codomains are reasonably small, one can often
get mileage out of drawing little pictures. Some properties of relations
become much clearer in the picture than in a more abstract set-theoretic
discussion.

For example, let’s fix the carrier set [10] and define the endorelation ρ as
follows:

x ρ y :⇔ (y+1) | x ∨ (x+5) | y

There, done.



Lists of Pairs 9

By definition, we can think of the relation as being given by a list of
pairs. Voila:

(1, 6), (2, 1), (2, 7), (3, 2), (3, 8), (4, 1), (4, 3), (4, 9), (5, 4), (5, 10), (6, 1),
(6, 2), (6, 5), (7, 6), (8, 1), (8, 3), (8, 7), (9, 2), (9, 8), (10, 1), (10, 4), (10, 9)

This is next to being useless, a human can barely read this.



A Square Plot 10

Since we are dealing with carrier set [10], we can plot the characteristic
function as a pretty 10 × 10 matrix (the top left corner is (1, 1)):



Domain [50] 11

x ρ y :⇔ (y+1) | x ∨ (x+5) | y



Forward Pointer: Graphs 12

Another often excellent way to visualize relations is to think of them as
diretec graphs.

Definition (Directed Graphs)
A directed graph (or digraph) is a structure G = ⟨V, E⟩ where

V is a set of vertices (or nodes, points)
E ⊆ V × V is a set of edges (or arcs, lines)

Given an endorelation ρ on A, we can build a corresponding digraph with
vertex set A and edges x � y iff x ρ y.



C’mon Jack 13

One might point out that digraphs and binary endorelations are “really”
exactly the same thing, it’s nothing more than a change in terminology.
Logically they are utterly the same. Why bother?

Again, it’s psychology that matters. Graph theory is an independent field
of study, and historically has produced different results than the study of
binary relations. Thinking about a problem just the right way is crucial in
math and TCS.

Another more mercenary difference is that a lot of work has gone into
graph rendering algorithms, sometimes they do a fantastic job of laying
out a graph. Use any help you can get.
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Divisor Lattice 17

Our example relation is slightly chaotic, so the pictures may not be
overwhelming. For simpler relations one can do better, in particular if the
layout is constructed painstakingly by hand.
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Bigger 18

Here are the divisors of 148176.

Exercise
Figure out what the vertices are as much as possible.



Special Relations 19

Here are a few particularly important endorelations.

Definition
IA = { (x, x) | x ∈ A }, the identity or diagonal relation.
UA = A × A, the universal relation.
∅A = ∅, the empty relation.

Exercise
What would the pictures for these relations look like in the matrix and
graph plots from above?



Pics 20
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Basic Properties 22

Experience shows that there is a fairly short list of basic properties of
relations that can be combined to define important special types of
relations (orders, equivalence relations). Let ρ be a binary relation on A.

Definition
property ∀ x , y, z ∈ A

reflexive x ρ x

irreflexive ¬(x ρ x)
symmetric x ρ y ⇒ y ρ x

asymmetric ¬(x ρ y ∧ y ρ x)
antisymmetric x ρ y ∧ y ρ x ⇒ x = y

transitive x ρ y ∧ y ρ z ⇒ x ρ z



Comments 23

Irreflexive is not the negation of reflexive.

The distinction between asymmetric and antisymmetric makes sense:
¬(x < y ∧ y < x) but x ≤ y ∧ y ≤ x ⇒ x = y.

Transitive means that whenever we have a chain of related elements

x0 ρ x1 ρ x2 ρ . . . ρ xn−1 ρ xn

we can conclude that x0 ρ xn. Algorithmically this is far and away the
most important property.



Examples 24

equal-to, subset-of and divides are reflexive
less-than, proper-subset-of and parent-of are irreflexive
equal-to and relatively-prime are symmetric
less-than and parent-of are asymmetric
less-than-or-equal, subset-of and divides are antisymmetric
equal-to, subset-of, divides and ancestor-of are transitive
parent-of and relatively-prime are not transitive

Note that there are corresponding decision problems: how do we check
whether are relation is, say, transitive?
At least for finite carrier sets one would like to have efficient algorithms.



Boolean Operations 25

For endorelations ρ and σ on some set A we can use propositional logic
to construct new relations.

x(¬ρ)y ⇐⇒ ¬(x ρ y)
x(ρ ∧ σ)y ⇐⇒ x ρ y ∧ x σ y

x(ρ ∨ σ)y ⇐⇒ x ρ y ∨ x σ y

x(ρ ⊕ σ)y ⇐⇒ x ρ y ⊕ x σ y

¬ρ is often written ρ̄.
These operations translated directly into the corresponding set operations
on the graphs of the relations, nothing really new here.

What would the matrix and digraph pictures look like?



Converse 26

Definition
Let ρ : A → B be a relation. The converse of ρ is a relation from B to
A defined by

x ρc y ⇐⇒ y ρ x.

Thus the domain/codomain of ρc is the codomain/domain of ρ.
Unlike with functions there is no problem flipping a relation.
Note that the converse operation is an involution: (ρc)c = ρ.
Clearly, ρ is symmetric iff ρc = ρ.



Mental Health Warning 27

Remember the rant about how the standard definition of functional
composition, f ◦ g, is backwards?

Well, we are now going to give the standard definition of relational
composition, and the chickens will come home to roost.

☠☠☠☠☠☠☠



Relational Composition 28

Definition
Suppose ρ : A → B and σ : B → C are relations. The (relational)
composition of ρ and σ is defined to be the relation τ : A → C where

x τ y ⇐⇒ ∃ z ∈ B (x ρ z ∧ z σ y).

The intermediate element z ∈ B is a witness for x τ y.
In symbols:

τ = ρ • σ

Right, this is exactly the opposite direction of f ◦ g.



WTF? 29

Historically, functional composition came first. Since Euler, we tend to
write function application on the left, as in f(a), so the definition of f ◦ g
makes some amount of sense.

But when the relational calculus was invented in the 19th century,
somehow people felt that composition should be written in the natural,
diagrammatic order.

If relations and functions were living on different planets, this would not
be an issue. But functions are a special case of a relations, so we have a
rather terrible clash of notation.

No one ever said math notation was logical.



Examples 30

Let ρ be the “parent of” relation. Then ρ • ρ is “grandparent of.”

Let < be the natural order on N. Then x(<•<)y ⇐⇒ y ≥ x + 2.

How about < the natural order on Q? How about R?

In the plane R2, let ρ be “directly North of” and σ “directly East of.”
Then ρ • σ is “North-East of.”

Let ρ be “x is a prime factor of y” on N+. What is ρ • ρ?



Soothing Picture (Composing All Relations on [3]) 31



Converse and Composition 32

Proposition
Show that (ρ • σ)c = σc • ρc.

Proof.

x (ρ • σ)c
y ⇔ y (ρ • σ) x

⇔ ∃ z
(
yρz ∧ zσx

)
⇔ ∃ z

(
zρcy ∧ xσcz

)
⇔ ∃ z

(
xσcz ∧ zρcy

)
⇔ x (σc • ρc) y

2
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