
MFCS

Rectypes

Klaus Sutner
Carnegie Mellon University
Fall 2022

1 Rectypes (aka Inductive Sets)

2 Rectype List

Building Things Bottom-Up 2

A lot of important objects are constructed in an inductive/recursive
manner. The general framework looks like so: we are given

one or several atoms

one or several constructors.

We are interested in the objects produced by repeated application of
constructors to atoms. For us, repeated always means finitely often.

We call the atoms are primitive, everything is compound.

We will write constructors with square brackets to distinguish them from
ordinary functions. So C[a, b] is a constructor with two arguments.

Recursive Data Types 3

Given atoms and constructors, we can define a recursive data type
(rectype for short) or inductively defined set† by systematically applying
the constructors over and over again to all atoms.

More precisely, call a set X inductive (wrto our atoms and constructors)
if X contains all the atoms, and is closed under the constructors: if
a1, a2, . . . , ak ∈ X then C[a1, a2, . . . , ak] ∈ X where C is a constructor
requiring k inputs (usually k = 1, 2).

Then the rectype defined by these atoms and constructors is

D =
⋂

{ X | X inductive }

†Rectype is a neologism that we have stolen from T. Forster in Cambridge; it is
somewhat nonstandard, but it’s too good not to use.

Deconstruction 4

For our purposes, the most interesting scenario is when all objects in D
are either primitive or compound, but never both.

Also, for a compound object b such that

b = C[a1, a2, . . . , ak]

there is no other way of deconstructing b.

The ai might again be compound and can be taken apart in a unique
way, over and over, until we hit rock bottom and wind up with atoms.

The Killer App 5

We can think of the natural numbers as being constructed from

the single atom 0,
the single constructor S.

Thus we obtain 0, S[0], S[S[0]], S[S[S[0]]], . . .

These simply represent the intuitive naturals 0, 1, 2, 3, . . . , without
using any particular digit-based notation system for the naturals,
so-called numeration systems.

Why would we do this? Because there are many possible numeration
systems, and it is a bad idea to bake these into the fundamental
definitions. They come into play when we start to develop efficient
algorithms operating on the naturals.

Naturals, Formalized 6

Again, the rectype Nat is defined by the atom 0 and the constructor S.

That’s it, nothing else.

If you are a friend of set theory you will want to think of S as some kind
of function. Since we insist on unique deconstruction, we need to have

S[x] ̸= 0

S[x] = S[y] ⇒ x = y

In other words, S must be injective and 0 cannot lie in its range. By
injectivity, the decomposition is unique.

This is exactly what the Dedekind-Peano axioms say, nothing new here,
really.

Wordprocessing 7

Distinctly more scary is to think of S as just a symbol, with no particular
meaning, so that our formal “natural numbers” are just the terms
0, S[0], S[S[0]], . . . We are manipulating formal expressions, that’s all.

Most people seem to hate this approach, we like to think about
semantics, not pushing symbols around on paper. That’s fine, but the
symbolic interpretation is just as valid†.

Why bother? Because wordprocessing is essentially the only thing a
computer can do. More precisely, computers inherently perform symbolic
computations.

†Hilbert made a big fuss about this.

1 Rectypes (aka Inductive Sets)

2 Rectype List

Linked Lists 9

A hugely important data structure that seem quaint today is a linked list.
Linked lists were invented in 1953 by H./.P/.Luhn, and implemented by
Newell, Shaw and Simon in 1956 in their work on artificial intelligence. A
little later, McCarthy’s Lisp used linked lists as a foundational concept.

L

nil5 2 8

How do we reason about these lists?

Axioms for Lists 10

Here is a simplified problem: we only consider lists of urelements (rather
than nested lists). Fix some ground set A of potential list elements. Here
is the rectype List(A) of all lists over A.

single atom nil,

constructors prep[a, L] for all a ∈ A.

nil represents the empty list, and prep[a, L] stands for the prepend
operation.

To lighten notation we usually write a :: L instead of prep[a, L].

Why? Because this sort of algebraic notation is better for humans.

Building Lists 11

What is ordinarily written as the list (a1, a2, . . . , an) is now represented
by the composite object

prep[a1, prep[a2, . . . , prep[an, nil], . . .]]

which is much easier on the eye when written as

a1 :: a2 :: . . . :: an :: nil

This approach is taken directly from Lisp (one of the most important
programming languages ever, maybe the most important one). It
translates easily into a pointer-based data structure.

Decomposition 12

The corresponding destructors are

head : List(A) → A

tail : List(A) → List(A)

such that

K = a :: L implies a = head(K), L = tail(K)

Note that, as written, both destructors are undefined for nil. For any
non-empty list L = a1 :: a2 :: . . . :: an :: nil we have

head(L) = a1

tail(L) = a2 :: . . . :: an :: nil

The Rectype List 13

One usually does not bother to spell this out, but as before for the
rectype Nat, we want List(A) to be the least set that

contains the atom nil

contains a :: L for any a ∈ A whenever it contains L.

This minimality condition excludes weird and unintended “lists”
containing lists as elements, containing elements not in A, or, heaven
forfend, infinite lists.

Structural Induction on Lists 14

Theorem (Induction for Lists)
Suppose X ⊆ List(A) where

nil ∈ X and
a :: L ∈ X for all a ∈ A, L ∈ X .

Then X = List(A).

Informally: any property that nil has, and that is inherited by a :: L from
L must already hold for all lists.

So the rectype List(A) is defined by induction, and we can use this
theorem to prove properties of recursively defined operations on lists.

Justification 15

Why is this reasoning admissible?

Suppose there is a counterexample, some list L not in X .

Choose L to be of minimal length (this works since any non-empyt set of
naturals has a least element).

L cannot be nil since we checked that nil ∈ X .

Hence, by decomposition, L = a :: K, a ∈ A, K a list shorter than L. By
minimality, K ∈ X .

We get a contradiction since K ∈ X implies L = a :: K ∈ L.

No Loss 16

Note that when A = {•} is a one-element set we are basically dealing
again with the natural numbers: a list {•, •, •} is just the natural number
3, written in unary.

One can check that induction on these •-lists is exactly the same as
induction on the naturals.

Left and Right 17

However, there is one big difference between induction on the naturals
and Induction on lists: for lists, we have a choice between induction on
the left and on the right.

Standard induction on the left:

Base case: show φ(nil)
Induction step:
assuming φ(L), show φ(a :: L)

Alternative induction on the right:

Base case: show φ(nil)
Induction step:
assuming φ(L), show φ(L :: a)

More Operations 18

Here is a definition of append in our framework.

app(a, nil) = a :: nil
app(a, b :: L) = b :: app(a, L)

Joining two lists together

join(nil, K) = K

join(a :: L, K) = a :: join(L, K)

For legibility we often write L :: a instead of app(a, L) and K :: L
instead of join(K, L).
Careful with parens, though. The law for append says
(b :: L) :: a = b :: (L :: a).

Yet More Operations 19

Erasing all occurrences of a ∈ A from a list

erase(nil) = nil
erase(a :: L) = erase(L)
erase(b :: L) = b :: erase(L) a ̸= b ∈ A

Keeping the first occurrence of a ∈ A:

keep1(nil) = nil
keep1(a :: L) = a :: erase(L)
keep1(b :: L) = b :: keep1(L) a ̸= b ∈ A

Mixed Operation 20

The objects involved need not all be lists.
For example, we can define the length of a list as follows:

len(nil) = 0
len(a :: L) = len(L) + 1

We use the naturals informally here, but one could express everything
quite easily in terms of the strict rectype definition of Nat.

Claim
len(join(K, L)) = len(K) + len(L)

Proof 21

Claim: len(join(K, L)) = len(K) + len(L)

Proof.
Base case: K = nil

len(nil :: L) = len(L) = 0 + len(L) = len(nil) + len(L)

Induction step: K = a :: K ′.

len((a :: K ′) :: L) = len(a :: (K ′ :: L)) = 1 + len(K ′ :: L)
= 1 + len(K ′) + len(L) = len(K) + len(L)

2

Reversal 22

Here is a definition of the reversal operation on lists:

rev(nil) = nil,
rev(a :: L) = rev(L) :: a

Aside: If you worry about implementation this may look unappealing:
append as defined is linear time on singly-linked lists, so this definition
would produce a quadratic time reversal.
Solution: change the data structure.
The Message: Don’t worry about implementation details too soon, first
get the logic right.

A Reversal Proof 23

Claim
rev(L :: a) = a :: rev(L) for all L, a.

Proof.
Base case: L = nil

rev(nil :: a) = rev(a :: nil)
= rev(nil) :: a

= nil :: a

= a :: nil
= a :: rev(nil)

Make sure to identify exactly which axioms are used at each step.

Step 24

Induction step: let L = b :: K.

rev((b :: K) :: a) = rev(b :: (K :: a))
= rev(K :: a) :: b

= (a :: rev(K)) :: b

= a :: (rev(K) :: b)
= a :: rev(b :: K)

Again, make sure to identify the axioms for each step.
2

Proof Fatigue 25

Note that every single step in this type of proof is really simple: we only
need to decide which axiom to use and when to apply the induction
hypothesis.

This type of argument is called equational logic and is relatively easy to
automate.

Alas, for humans it’s not so simple: everyone’s eyes glaze over after half
a dozen steps. Plus, it’s really easy to make silly mistakes.

Exercises 26

Exercise
rev(L :: K) = rev(K) :: rev(L) for all L, K.

Exercise
rev(rev(L)) = L for all L.

Exercise
Write rot(L) for the result of rotating L cyclically by one place to the
left. Give an inductive definition of rot and characterize the lists L such
that rot(L) = L.

The Rotation Problem 27

Problem: Rotation
Instance: An array of A, a positive integer s.
Solution: Rotate A by s places.

Of course, the challenge is to do this with minimal resources.
How about linear time and O(1) extra space?

This is surprisingly difficult. Clearly, we can rotate by one place in linear
time and O(1) extra space. But we cannot repeat s = O(n) times
without violating the linearity constraint.

Alternatively, we can use scratch space O(s) to move the first s elements
out of the way, and move everything in linear time, but that violates the
space constraint.

The Reversal Trick 28

A clever and far from obvious trick is to use reversal to implement
rotation. The key observation is that

rot(u :: v, s) = rev(rev(u) :: rev(v))

where u has length s.

In other words, reverse the initial segment of A of length s, then reverse
the remainder, and in one last step reverse the whole array.
Since reversal can clearly be handled in linear time and O(1) extra space,
done.

Code 29

// reverse block from lo to hi, inclusive
void reverse(int lo, int hi) {

int i,j, m = (hi-lo)/2;
for(i=lo,j=hi; i<m; i++,j--)

swap(i, j);
}

// rotate left, len length of array
void rotate_left(int s) {

s = s mod len;
reverse(0, s-1);
reverse(s, len-1);
reverse(0, len-1);

}

Exercise
What happens if we perform the reverse(0, len-1) operation first?

	Rectypes (aka Inductive Sets)
	Rectype List

