MFCS

Dedekind-Peano Axioms

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
FaLr 2022

1 Dedekind-Peano Axioms

2 Self-Similarity, Induction, Recursion

3 % Truth and Proofs

Dedekind-Peano

Richard Dedekind and Guiseppe Peano gave an axiomatization of the
natural numbers in the late 1800s.

@ 0 is a natural number.

@ The successor of a natural number is a natural number.
@ 0 is not a successor.

@ Two different natural numbers have different successors.
o

Principle of Mathematical Induction

If a property obtains at 0 and is inherited by the successor of every
natural number with this property, then this property holds of all
natural numbers.

This is the minimalist version, usually one includes axioms for addition,
multiplication and order.

https://en.wikipedia.org/wiki/Richard_Dedekind
https://en.wikipedia.org/wiki/Giuseppe_Peano

Formalizing Dedekind-Peano

successor!

S(x) #0 S@)=5y) ==y
addition

r+0=2x 4+ S(y) =S(x+y)

multiplication

order

—(z < 0) r<Sy)y er=yVe<y

TWe have left off the pesky universal quantifiers.

Infinity

These axioms use basic symbols 0, S, +, - and <, all with their obvious
meaning.

The successor/addition/multiplication axioms are all due to Richard
Dedekind, and are really incredibly clever.

The successor axioms imply that there are infinitely many natural
numbers: S is injective but not surjective (0 is not in its range). This is a
brilliant way to describe infinite sets in FOL.

The axioms controlling addition, multiplication and order are all based on
recursion. They were proposed about half a century before computability
theory came along, and another 30 years before programming languages
supporting recursion existed.

https://en.wikipedia.org/wiki/Richard_Dedekind
https://en.wikipedia.org/wiki/Richard_Dedekind

Induction Axiom

So far, the axioms are quite feeble, we need a way to express induction.
So let P be any property of the naturals and adopt the induction axiom

P(0) AV z (P(2) = P(S(2))) = VzP(z)

Aside: This is a white lie: as stated, this is not first-order, we would
need to quantify over P which requires a second-order system.

v P <P(0) AVz(P(z) = P(S(2)) = V= P(z))

Second-order logic is a hot mess (and really just set theory in disguise).

Standard Workaround

We want to keep everything at the first-order level, where life is enjoyable,
gratifying and pleasant. So we use a trick: we replace the predicate P(z)
by an arbitrary first-order formula ¢(z) (with free variable z).

P(0) Az (Y(2) = ¥(S(2))) = Vz9(2)

This is a so-called axiom schema, we get one axiom for each choice of .
So there are infinitely many induction axioms, but that's not much of a
problem at all.

The idea that one can replace vaguely defined notions like “definite
property” by first-order formulae is now over 100 years old and has
conquered the world.

Success!!!

So now we have a pretty axiom system that describes

successor, addition, multiplication, order and induction.

It has been empirically verified over the last 125 years that these axioms
are enough to derive all the basic properties of the natural numbers.

For example, | strongly suspect that all the homework assignments in
MFCS that do not deal with stuff like the reals could be formally proven
using just the Dedekind-Peano axioms'

"You would go stark raving mad if you tried to really carry out this project. Maybe
you could do it using the latest LEAN libraries, I'm not sure.

2 Self-Similarity, Induction, Recursion

Self-Similarity

Here is another way to think about induction. We are interested in
Objects that are similar to parts of themselves.

So these objects are somehow composed of simpler, smaller, yet similar
objects. Since the smaller components are similar to the large object,
they in turn can be decomposed into yet smaller ones, and so on.

There are two scenarios:

@ the decomposition goes on forever,

o after finitely many steps, the decomposition reaches indecomposable
atoms, and stops.

For computational purposes, the finite descent case is much more
important, but in geometry the infinite version is easier to understand.

Droste Effect

10

11

Sierpinsk

Hilbert

12

=
e

S
.

e

i

]

Ak Erk

[=h]

-

5
=

e

ﬁﬁ%

st

A Miracle

Hilbert recursively defines a family of curves, maps from the unit interval
to the unit square.
H, :[0,1] = [0,1]?

The Hilbert curve is the limit of these guys:

H:[0,1] — [0,1)? H(r) =lim H,(r)

Lo and behold, H is a continuous bijection between [0,1] and [0, 1]2.

This is why we need proofs.
Intuition only goes so far.

14

Top Down: Recursion

One way to exploit self-similarity is to use it to define operations: we
explain the result of the operation on a big object in terms of the results
on smaller objects, until we hit rock-bottom.

Tired old standard example:

This is one way to define the factorial function. An arguable less
obfuscatory definition is

15

Bottom Up: Induction 16

Alternatively, we can start at the small objects and then work our way up
to larger ones, exploiting the fact that we already have the results for the
smaller guys.

For example, in recursion, the computation of 50! contains a similar
sub-computation for 49!, which contains a sub-computation for 48! and
so on, down to 0! where the recursion stops.

By the same token, we understand the computation for 0! (the result is
just 1) and can use it to build up the computation of 1!, then 2!, then 3!
and so on, all the way up to 50!.

Killer App

This machinery becomes really powerful when

@ we construct some objects by induction, and then

@ prove their properties, again by induction.

This idea is used in countless places in math and TCS, but even in plain
applications like the design of data structures.

17

Induction versus Recursion 18

It is a convention to always talk about induction when it comes to proofs,
no one ever says “proof by recursion.”

But for constructions both terms are used, we can define a structure or
an operation by induction or by recursion.

In the world of algorithms, recursion is often easier to express than
induction: just write down the recursion, the system organizes the
computation. Alas, it may be slower than a careful bottom-up approach
(dynamic programming).

Natural Numbers

DP axioms S; and S, together with induction have the purpose to pin
down the naturals as the following sequence:

N = {0, 5(0), 5(S(0)), S(S(S(0))),. .., S(0), ...}

Correspondingly, to prove an assertion ¢ (z) for all z € N, it suffices to
show that

e (0)
e ¢(z) implies ¥(S(z))

So we have to establish the base case, and show that the induction
hypothesis (IH) implies induction conclusion (IC).

19

A Proof

To avoid confusion with intuitive addition, let's write
add(z,0) =z
add(z, S(y)) = S(add(z,y))
This is an addition algorithm of sorts, but not the kind you are familiar
with: those are all based on representing numbers in a particular

numeration system (usually decimal or binary), and then explaining how
to manipulate the digits.

Using successors is rather similar to using base 1 notation, no lookup
table is needed on how to add individual digits.

20

Proving Commutativity 21

As an example for an application of the Dedekind-Peano axioms, let us
prove that the addition function is commutative. The proof will be rather
overly formal, but is will show clearly where the axioms are used.

Again, to make clear that we are dealing with a function defined formally
by the axioms, we write

add(z,y) instead of z+y

The careful, pseudo-formal argument is rather tedious, but everybody
should do this kind of thing a couple of times, before reverting back to a
to less formal presentation.

Batten down the hatches. We will need a few auxiliary results.

Auxiliary Claim

Claim (1)
add(0,y) =y
Proof. Let ¢(z) be M

Base case: (0): add(0,0) =.44, 0

Inductive step:
IH: ¢(2): add(0,z2) = 2
IC: ¥(S(2)): add(0, S(2)) = S(=)

add(0, 5(2)) =add, S(add(0,2)) = S(2)

22

And Another 23

Claim (2)
add(z, S(y)) = add(S(x),)

Proof. Let v (z) be ’ add(z, S(z)) = add(S(x), 2) ‘

Base case: ¢(0): add(z, S(0)) = add(S(z),0)
add(z, S(0)) =add, S(add(z,0)) =aga, S() =add, add(S5(),0)

Inductive step:
IH: ¢(2): add(x,S(2)) = add(S(x), z)
IC: (S(2)): add(z, S(S(z))) = add(S(x), S(z))
add(z, S(S(y))) =add, S(add(z, S(y)
= S(add(5(z),y))
=add, add(S(z), S(y))

)

Commutativity

Lemma
add(z, y) = add(y, z)

Proof. Let 1(2) be |add(x, z) = add(z,z) |

Base case: #(0) is Claim 1.

IH: ¢(2): add(x, z) = add(z, x)
IC: ¥(S(2)): add(z, S(z)) = add(S(z),)

add(z, S(z)) =add, S(add(z, z))
=IH S(add(z, x))
=add, add(z, S(z))
=02 add(S(2),x)

24

A Horror 25

These proofs are a horror—for humans. For theorem provers they are not
so bad, simply because they are extremely mechanical.

There is the problem of figuring out that one needs to prove the claims
first, but once these subgoals are recognized, everything is pretty
straightforward.

Obviously we are going to be much more relaxed about details in the
future.

More Proofs

Claim
t+y+z)=(+y +z

Claim
T+y=x+z impliesy =z

Claim
Vedy(xz=0Vz=25())

Claim
<y iff3z(z£0ANz+2z=1y)

26

Food for Thought 27

Problem: Axiomatize the integers.

In other words, modify Dedekind-Peano arithmetic so it describes the
integers rather than just the naturals.

There are several ways of doing this. For example, one could try to use a
combination of successor function and negation, using axioms such as

—-0=0
S(=S(z)) = —x

So negation is an involution with fixed point 0. Needless to say, S also
has to be a bijection in this context.

3 % Truth and Proofs

Paradise? 29

One might think that this is the end of the story: given any valid claim in
arithmetic, we can just sit down and hammer out a proof like the last
one, using no more that the Dedekind-Peano axioms.

We would very much like the following to be true:

A first-order sentence 1 is true over the natural numbers
if, and only if,

1 can be proven in first-order logic from the Dedekind-
Peano axioms.

Dire Warning 30

If only. As far as we know, only true statements can be proven from the
Dedekind-Peano axioms (consistency).

It is also true that one can obtain many, many results this way.

Alas, not all valid statements about the naturals can be proven this way.
Some would say: everything that's really important (and they would be
wrong).

This is all Godel's fault: his infamous Incompleteness Theorem ruined
everything. Even worse, there is no way to fix these problems.

-~

-~
-~
-~
-~

31

The reason why things go bad is that the Dedekind-Peano axioms do not
pin down the naturals completely. There are other, unintended ways to
interpret the axioms:

N“=N ...Z...Z...Z...

The non-standard “naturals” start out with a copy of N, but that copy is
followed by Q-many copies of Z, containing “infinitely large” numbers. If
we extend this to the reals we get actual infinitesimals’, arguably a much
better sandbox to play calculus in.

You're welcome.

TThis was done by A. Robinson, Non-Standard Analysis, in the 1960s

	Dedekind-Peano Axioms
	Self-Similarity, Induction, Recursion
	* Truth and Proofs

