MFCS

Classifying Functions

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
FaLr 2022

1 Classes of Functions

2 Dealing with Jections

3 Higher-Order Functions

Recall: Calculus

It is a standard exercise to classify real functions in calculus according to
various properties they may or may not have:

@ bounded
@ monotonic
@ periodic
@ continuous

o differentiable

The last two properties depend heavily on the reals, the first three are
slightly more general.

We are here interested in basic properties that apply to all possible
functions.

flt's a good exercise to figure out for which domains/codomains they make sense.

Reversibility

Applying a function to arguments usually destroys information: given the
result, we cannot reproduce the input. A mild example is

fR—=R x> 2
where the fibers can have size 2. Much worse is multiplication:
x: LXZL—Z T,y T*y

Here the fibers can be arbitrarily large and even infinite.

Definition
A function f : A — B s injective, reversible or one-one if f(x) = f(y)
implies x = y.

Asymmetry

There is a slightly strange asymmetry in our definition of a function: for
f:+A— B we require

Vee Adye B(f(z) =y)
but we do not require the opposite:

Vye Bz e A(f(z) =1y)
Definition

A function f : A — B is surjective or onto if its range is the whole
codomain: rng f = cod f.

Both

Definition
A function that is both injective and surjective is a bijection.

Endofunctions that are bijections are often called permutations, in
particular on a finite set.

If f: A— B is a bijection, then we can actually think of the inverse
map as a plain function

ffiB—A f'b)=ae fla)=b

Bijections are hugely important in combinatorics and group theory, and
we will use them to define a notion of size of an arbitrary set (cardinality).

A Modest Proposal

Injectivity is a deep-seated property of a function, but surjectivity is not:
we can simply redefine the codomain to be the range.

Here is a proposal by Herr Prof. Dr. Wurzelbrunft:

We can improve the definition of a function: all functions
are required to be surjective.

He thinks this is not a big deal, since we can just shrink the codomain to
the range of the original function.

How about it? Wouldn't Wurzelbrunft-functions make life much easier?

Doom and Disaster
Wourzelbrunft is out of his mind.

Consider calculus: figuring out the range of a function can be very
difficult. Try the real function

m2i+1

fla) = (-1)’ @it

without using results from calculus.

Even worse, there are computable functions f : N — N where the range
is not computable.

It might even be an open problem what the range of a pretty simple
function is (think about prime twins).

Rant on Definitions

Some people will tell you that a definition is just an abbreviation, a
shortcut that allows us to contract a possibly complicated and long
expression into a short one.

x is a foofoo = blahblahblahblah z blahblahblahblahblah

Consequently, there is no such thing as a

In the sense of mathematical logic this is correct. But it's utter nonsense
in the RealWorld™. A definition is supposed to encapsulate an idea, a
concept—done right, it will structure and advance the argument. Done
wrong, it will just produce cognitive clutter and will stand in the way.

Ask Cauchy about continuity.

Understanding Definitions

Recall our old checklist?

@ intuitive meaning
@ intuitive meaning
@ intuitive meaning
e formal meaning
@ examples

@ counterexamples
@ basic results

@ links to other concepts

If several of these items are difficult to handle, maybe the definition is
wrong and needs to be changed.

2 Dealing with Jections

Calculus

For the usual suspects from calculus functions, it may be straightforward
to determine their properties, and it may require a bit of knowledge in
analysis.

z — z? not surjective, not injective
T —x surjective, not injective
T+ e’ not surjective, injective
z— z® surjective, injective

Polynomials are easy, but exponentiation, logarithms, trig functions are
already quite messy (and it took a long time to develop a good
understanding of these functions).

11

Picture

12

Discrete 13

Life becomes much more interesting in the discrete realm, in part
because the highly developed machinery from analysis does not apply?.
Here are some functions on the naturals.

v2(0) = oo
vo(x) = max(k | 2" divides)

|z| = number of binary digits in x

V9 is called the 2-adic valuation or 2-adic order and plays a big role in
number theory.

vo(z) simply counts the trailing Os in the binary expansion of z.

So x/2"2(®) is odd.

fNot my idea, von Neumann pointed this out.

https://en.wikipedia.org/wiki/John_von_Neumann

Picture

3t e ° ° ° ° ° ° °

N

=

:OQ..0.0.COQ..0.00COQ..O..OCOQ..O

B T T T
20 40 60 80 100 120

14

Mystery Function

Now define a strange function f : N — N by

fla) =22k +1) -1
k=uwve(z+1)
(= ((x+1)/2F -1)/2

Intuition? No clue.
Formal definition? Mildly messy, not too horrible.

Properties? No clue.

15

Log-Plot 16

70 .
60

50

40 *

30 eet’

20 veet”

10 .-.- e ® o° « ¢ ° . .

FAQ

Why the log-plot? f grows exponentially and an ordinary plot is quite
useless.

4000
3000
2000 - .

1000 - o

Lle o o o & o o o o o o © o T 4 . @ . ¢ 1 ® , 4 , |

0 5 10 15 20 25

17

FAQ

What are the “lines” in the picture?

k is critical, so it is natural to filter out the arguments for which
k=0,1,2,...

70}
6o}
s0f
a0
30}
2of

10

18

FAQ

Why is f injective?

Suppose f(z) = f(z'). Then
2¢(2k + 1) = 2¢ (2K + 1)
so that k =k’ and £ = ¢'. Why

But ((z+1)/2" —=1)/2= ((2’ +1)/2" —1)/2 and z = '

So the trick is to split = into two parts k£ and £ and combine those in a
reversible fashion.

19

FAQ

Why is f surjective?

Fix z € N, we need some = € N so that

202k +1) =241
where k = vy(z +1) and £ = ((z +1)/2" — 1) /2
Note that £ and & are uniquely determined by z.
To match k consider z + 1 = 2¥(2r + 1).

Then ¢ = ((2r +1) — 1)/2 = r and we are done.

20

Four Cases 21

z s |z)? not surjective, not injective
x — va(x) surjective, not injective

T x+ |z not surjective, injective
x— f(x) surjective, injective

For item 2 we have to adjust the definition of vy slightly: v5(0) = 0.

Exercise

Make sure you understand the proofs of all these assertions.

Last Question

Recall the definition of f:
fla) =22k +1) —1

kE=wvy(z+1)
0= ((z+1)/2F —1)/2

What would happen if we switch k& and £ in the first line?

22

3 Higher-Order Functions

Functions as Input

One usually thinks of functions that map simple objects to other simple
objects: numbers to numbers, pairs of numbers to numbers, lists of
numbers to numbers, lists to lists, matrices to numbers, ...

That's fine, but there is another important class of functions, ones that
take other functions as input.

These are sometimes called higher-order functions or functionals or
operators. They are conceptually a little more difficult to deal with, but
they are extremely useful, nothing moves without them.

24

Higher-Order Functions

This idea is quite familiar from calculus:

@ Differentiation of real functions
Oy (R—=R) = (R—R)

@ Integration of real functions

/:(R%R)%(R%R)

Strictly speaking, this is not quite right. Why?

25

More Higher Order 26

More relevant to us are the following examples.

@ Composition

0:(B=+C)x(A—=B)—(A—C)

e Currying
curry : (AxB—=C)—> (A= (B—(0))
e Map
map : (A — B) x List(4) — List(B)
@ lteration
iterate: (A - A) x N = (A — A)
@ Orbits

orb: (A — A) x A— AN

727777 o7

Having a small arsenal of carefully curated higher order
functions lying around is hugely useful, both conceptually
and computationally.

This takes a bit of getting-used-to, but pays off in the end.
Using abstraction is better than to wallow in minute details.

Computational Example: Fold

Here is a well-known example of a higher order function:

fold: (Ax B — A) x A x List(B) — A

Suppose we have f: A x B — A and a starting element e € A. By
recursion, we can define

fold(f,e,.) : List(B) — A

fold(f,e,nil) =e
fold(f,e, L :: b) = f(fold(f,e,L),b)

L :: b means append b to L. For example,

f0|d(faea (avbv G, d)) = f(f(f(f(eva)vb)vc>vd)

28

Who Cares?

We can now implement at a surprising number of list operations:

f(a,b) e fold(f,e,.)
a+1 0 length
prep(a, b) nil reverse
app(a, g(b)) nil map g
aV b= false search for ¢
a+[b=¢ 0 count ¢

Here [ow = f] follows Knuth's convention: it is 1 (or True) if indeed
a = /3, and 0 (or False) otherwise.

29

	Classes of Functions
	Dealing with Jections
	Higher-Order Functions

