
MFCS

Classifying Functions

Klaus Sutner
Carnegie Mellon University
Fall 2022

1 Classes of Functions

2 Dealing with Jections

3 Higher-Order Functions

Recall: Calculus 2

It is a standard exercise to classify real functions in calculus according to
various properties they may or may not have:

bounded
monotonic
periodic
continuous
differentiable

The last two properties depend heavily on the reals, the first three are
slightly more general†.

We are here interested in basic properties that apply to all possible
functions.

†It’s a good exercise to figure out for which domains/codomains they make sense.

Reversibility 3

Applying a function to arguments usually destroys information: given the
result, we cannot reproduce the input. A mild example is

f : R → R x 7→ x2

where the fibers can have size 2. Much worse is multiplication:

∗ : Z × Z → Z x, y 7→ x ∗ y

Here the fibers can be arbitrarily large and even infinite.

Definition
A function f : A → B is injective, reversible or one-one if f(x) = f(y)
implies x = y.

Asymmetry 4

There is a slightly strange asymmetry in our definition of a function: for
f : A → B we require

∀ x ∈ A ∃ y ∈ B (f(x) = y)

but we do not require the opposite:

∀ y ∈ B ∃ x ∈ A (f(x) = y)

Definition
A function f : A → B is surjective or onto if its range is the whole
codomain: rng f = cod f .

Both 5

Definition
A function that is both injective and surjective is a bijection.

Endofunctions that are bijections are often called permutations, in
particular on a finite set.

If f : A → B is a bijection, then we can actually think of the inverse
map as a plain function

f−1 : B → A f−1(b) = a ⇔ f(a) = b

Bijections are hugely important in combinatorics and group theory, and
we will use them to define a notion of size of an arbitrary set (cardinality).

A Modest Proposal 6

Injectivity is a deep-seated property of a function, but surjectivity is not:
we can simply redefine the codomain to be the range.

Here is a proposal by Herr Prof. Dr. Wurzelbrunft:

We can improve the definition of a function: all functions
are required to be surjective.

He thinks this is not a big deal, since we can just shrink the codomain to
the range of the original function.

How about it? Wouldn’t Wurzelbrunft-functions make life much easier?

Doom and Disaster 7

Wurzelbrunft is out of his mind.

Consider calculus: figuring out the range of a function can be very
difficult. Try the real function

f(x) =
∑

(−1)i x2i+1

(2i + 1)!

without using results from calculus.

Even worse, there are computable functions f : N → N where the range
is not computable.

It might even be an open problem what the range of a pretty simple
function is (think about prime twins).

Rant on Definitions 8

Some people will tell you that a definition is just an abbreviation, a
shortcut that allows us to contract a possibly complicated and long
expression into a short one.

x is a foofoo :⇔ blahblahblahblah x blahblahblahblahblah

Consequently, there is no such thing as a wrong definition.

In the sense of mathematical logic this is correct. But it’s utter nonsense
in the RealWorldTM. A definition is supposed to encapsulate an idea, a
concept–done right, it will structure and advance the argument. Done
wrong, it will just produce cognitive clutter and will stand in the way.

Ask Cauchy about continuity.

Understanding Definitions 9

Recall our old checklist?

intuitive meaning
intuitive meaning
intuitive meaning
formal meaning
examples
counterexamples
basic results
links to other concepts

If several of these items are difficult to handle, maybe the definition is
wrong and needs to be changed.

1 Classes of Functions

2 Dealing with Jections

3 Higher-Order Functions

Calculus 11

For the usual suspects from calculus functions, it may be straightforward
to determine their properties, and it may require a bit of knowledge in
analysis.

x 7→ x2 not surjective, not injective
x 7→ x3 − x surjective, not injective
x 7→ ex not surjective, injective
x 7→ x3 surjective, injective

Polynomials are easy, but exponentiation, logarithms, trig functions are
already quite messy (and it took a long time to develop a good
understanding of these functions).

Picture 12

-2 -1 1 2

-4

-2

2

4

6

8

Discrete 13

Life becomes much more interesting in the discrete realm, in part
because the highly developed machinery from analysis does not apply†.
Here are some functions on the naturals.

ν2(0) = ∞
ν2(x) = max

(
k | 2k divides x

)
|x| = number of binary digits in x

ν2 is called the 2-adic valuation or 2-adic order and plays a big role in
number theory.

ν2(x) simply counts the trailing 0s in the binary expansion of x.

So x/2ν2(x) is odd.

†Not my idea, von Neumann pointed this out.

https://en.wikipedia.org/wiki/John_von_Neumann

Picture 14

20 40 60 80 100 120

1

2

3

4

5

6

Mystery Function 15

Now define a strange function f : N → N by

f(x) = 2ℓ(2k + 1) − 1

k = ν2(x + 1)
ℓ =

(
(x + 1)/2k − 1

)
/2

Intuition? No clue.

Formal definition? Mildly messy, not too horrible.

Properties? No clue.

Log-Plot 16

FAQ 17

Why the log-plot? f grows exponentially and an ordinary plot is quite
useless.

0 5 10 15 20 25

1000

2000

3000

4000

FAQ 18

What are the “lines” in the picture?

k is critical, so it is natural to filter out the arguments for which
k = 0, 1, 2, . . .

50 100 150 200

10

20

30

40

50

60

70

FAQ 19

Why is f injective?

Suppose f(x) = f(x′). Then

2ℓ
(
2k + 1

)
= 2ℓ′(

2k′ + 1
)

so that k = k′ and ℓ = ℓ′. Why

But
(
(x + 1)/2k − 1

)
/2 =

(
(x′ + 1)/2k − 1

)
/2 and x = x′.

So the trick is to split x into two parts k and ℓ and combine those in a
reversible fashion.

FAQ 20

Why is f surjective?

Fix z ∈ N, we need some x ∈ N so that

2ℓ(2k + 1) = z + 1

where k = ν2(x + 1) and ℓ =
(
(x + 1)/2k − 1

)
/2

Note that ℓ and k are uniquely determined by z.

To match k consider x + 1 = 2k(2r + 1).

Then ℓ = ((2r + 1) − 1)/2 = r and we are done.

Four Cases 21

x 7→ |x|2 not surjective, not injective
x 7→ ν2(x) surjective, not injective
x 7→ x + |x| not surjective, injective
x 7→ f(x) surjective, injective

For item 2 we have to adjust the definition of ν2 slightly: ν2(0) = 0.

Exercise
Make sure you understand the proofs of all these assertions.

Last Question 22

Recall the definition of f :

f(x) = 2ℓ(2k + 1) − 1

k = ν2(x + 1)
ℓ =

(
(x + 1)/2k − 1

)
/2

What would happen if we switch k and ℓ in the first line?

1 Classes of Functions

2 Dealing with Jections

3 Higher-Order Functions

Functions as Input 24

One usually thinks of functions that map simple objects to other simple
objects: numbers to numbers, pairs of numbers to numbers, lists of
numbers to numbers, lists to lists, matrices to numbers, . . .

That’s fine, but there is another important class of functions, ones that
take other functions as input.

These are sometimes called higher-order functions or functionals or
operators. They are conceptually a little more difficult to deal with, but
they are extremely useful, nothing moves without them.

Higher-Order Functions 25

This idea is quite familiar from calculus:

Differentiation of real functions

∂x : (R → R) → (R → R)

Integration of real functions∫
: (R → R) → (R → R)

Strictly speaking, this is not quite right. Why?

More Higher Order 26

More relevant to us are the following examples.

Composition

◦ : (B → C) × (A → B) → (A → C)

Currying
curry : (A × B → C) → (A → (B → C))

Map
map : (A → B) × List(A) → List(B)

Iteration
iterate : (A → A) × N → (A → A)

Orbits
orb : (A → A) × A → AN

????? 27

Having a small arsenal of carefully curated higher order
functions lying around is hugely useful, both conceptually
and computationally.

This takes a bit of getting-used-to, but pays off in the end.
Using abstraction is better than to wallow in minute details.

Computational Example: Fold 28

Here is a well-known example of a higher order function:

fold : (A × B → A) × A × List(B) → A

Suppose we have f : A × B → A and a starting element e ∈ A. By
recursion, we can define

fold(f, e, .) : List(B) → A

fold(f, e, nil) = e

fold(f, e, L :: b) = f(fold(f, e, L), b)

L :: b means append b to L. For example,

fold(f, e, (a, b, c, d)) = f(f(f(f(e, a), b), c), d)

Who Cares? 29

We can now implement at a surprising number of list operations:

f(a, b) e fold(f, e, .)

a + 1 0 length

prep(a, b) nil reverse

app(a, g(b)) nil map g

a ∨ [b = c] false search for c

a + [b = c] 0 count c

Here [α = β] follows Knuth’s convention: it is 1 (or True) if indeed
α = β, and 0 (or False) otherwise.

	Classes of Functions
	Dealing with Jections
	Higher-Order Functions

