
MFCS

Functions

Klaus Sutner
Carnegie Mellon University
Fall 2022



1 Functions Defined

2 Composition and Iteration



Pretty Pictures 2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Legendre polynomials you might know from calculus.



IVT 3

ca b

v

f(a)

f(b)

A beautiful picture of some rando continuous function. Supposedly this
picture is useful to understand why the intermediate value theorem holds.



Too Narrow 4

Unfortunately, this concept of a function familiar from calculus is far too
narrow for our purposes. We need to work a bit harder and figure out
what the essential ideas behind the concept of a function really are.

First off, we can take inspiration from computable functions, functions
that can be described by an algorithm.

To specify such a function, we need three pieces of information:

the type of the allowed inputs,
the type of the corresponding outputs,
a mechanical method to get from input to output.



Abstraction 5

Input/output types are a perfectly good general idea, that we will steal.
Alas, requiring all functions to be defined by an algorithm is not terribly
useful.

For us, the “method” can be as general as imaginable: it can be just a
collection of input/output pairs.

More precisely, suppose A and B are two sets. We want to define
functions from A to B. To this end, consider some input/output pairs:

F ⊆ A × B

When would F make sense as a function?



Key Ideas 6

We need two key properties.

Totality For every x ∈ A, there is a y ∈ B such that (x, y) ∈ F .

Single-Valuedness If (x, y), (x, z) ∈ F , then y = z.

In other words, we want the function to be defined on all of A†, and we
want the output to be unique.

That’s all, folks.

†Actually, it does make sense to consider so-called partial functions that may not
be defined on all of A, but not right now.



Formal Definition 7

Definition
A function (or map, mapping) from A to B is a triple (F, A, B) where
F ⊆ A × B is total and single-valued.

We write f : A → B for a function from A to B and call A the domain
of f , and B its codomain. F = grf f is called the graph of the function†.

f is an endofunction if dom f = cod f .

We write f(a) = b instead of (a, b) ∈ F .

We write A → B or BA for the collection of all functions from A to B.

†In set theory, a function is often defined to be its graph. That won’t work for us.



Example: Legendre Polynomial #5 8

For P5 we have:

the domain is R
the codomain is R
the graph is

{ (x, (15x − 70x3 + 63x5)/8) | x ∈ R }

So this function is “computable” in a way (once you have figured out
what it means to compute with reals, currently more or less an open
problem).



Notation 9

Usually we do not utilize the triple notation for functions, it’s a bit too
fusty. Instead we write things like

f : A → B f(x) = blahblahblah

If domain and codomain are completely obvious from context, we may
get lazy and write

f(x) = blahblahblah

It’s best to avoid this for a while, though, to get used to specifying
domain and codomain precisely.



Forward 10

When b = f(a), one often calls b the image of a under f .

Definition
Consider a function f : A → B . The image of X ⊆ A under f is

f(X) = { f(x) | x ∈ X }

The range or image of f is rng f = f(dom f).

For example, sin : R → R has range [−1, 1], exp : R → R has range R+
and log : R+ → R has range R.



What is f? 11



Notation 12

If you want to be very precise, you can introduce a new function

f̂ : P(A) → P(B) f̂(X) = { f(x) | x ∈ X }

In other words, we could keep track of the change in domain and
codomain and change the symbol for the function accordingly.

In programming this is critical, code expecting input of type A will not
accept input of type P(A).

But in math and TCS it’s up to the reader to figure out what exactly is
meant by f †. You are supposed to adjust the types depending on context.

†This tends to drive beginners nuts, but in the end it is the only feasible approach.
Otherwise you drown in symbols



Backward 13

Definition
Consider a function f : A → B .
The preimage or fiber of b ∈ B under f is

f−1(b) = { a ∈ A | f(a) = b }

The preimage of X ⊆ B under f is f−1(X) =
⋃

b∈X f−1(b).

Warning: f−1 is not a function B → A, it has the type B → P(A) or
P(B) → P(A)†.

†But see bijections below.



Example 14

Consider sin : R → R .

For |x| > 1, the fibers sin−1(x) are all empty.

The fiber sin−1(0) is Zπ.

And sin−1(R≥0) is [0, π] + 2Zπ.



Functions versus Sets 15

Suppose we have some ambient set U and we need to deal with subsets
A ⊆ U . We can express these subsets in terms of functions.

Definition
The characteristic function of A ⊆ U is defined by χ

A
: U → 2 where

χ
A

(x) =
{

1 if x ∈ A
0 otherwise.

Here we write 2 = {0, 1}.

We will shamelessly identify 0 with False, and 1 with True, whenever
convenient. Or we think of them as integers, it all depends†.

†This kind of skulduggery drives type theory purists nuts.



Bitvectors 16

So χ
A

is just a bitvector that answers membership questions.

In particular when U = [n] and n is reasonably small, this provides an
excellent implementation for subsets.

Consider the universe U = [10] and A = {2, 3, 6, 8}, then

bool A[] = {0,0,1,1,0,0,1,0,1,0}

For n = 64 this means we can perform some operations in one step.



Picture 17

Bitvectors for all even-cardinality subsets of [6].



Set Operations 18

Characteristic functions translate set operations into logical connectives:

χ
A∪B

= χ
A

∨ χ
B

χ
A∩B

= χ
A

∧ χ
B

χ
A⊕B

= χ
A

⊕ χ
B

χ
Ac

= ¬χ
A

Here all the logical operations are supposed by applied pointwise:
χ

A∪B
(x) = χ

A
(x) ∨ χ

B
(x).



1 Functions Defined

2 Composition and Iteration



Composition of Functions 20

The most important property of functions is that they can be composed,
we can execute one after the other. Given

f : A → B g : B → C

Definition
The composition of f and g, in symbols g ◦ f , is given by

h : A → C h(x) = g(f(x))

Note that the codomain of f and the domain of g has to match,
otherwise composition is undefined.



A Pipe Dream 21

In 1976, the category theorist Charles Wells wrote†.

Observe that I write functions on the right and functional
composition from left to right. This is undoubtedly the
Wave of the Future. It makes functional diagrams easier to
read and corresponds to the natural order of doing things
on a pocket calculator.

Hewlett-Packard was no doubt pleased with Wells’s comments: their
calculators used postfix notation: argument 1, argument 2, operator.
Works much better than infix.

Alas, nothing happened, zilch, nada, null.

†In a paper titled “Some Applications of the Wreath Product Construction,” no
less.

https://en.wikipedia.org/wiki/Charles_Wells_(mathematician)


But Why? 22

There is a clash between composition of functions and diagrams

A
f−→ B

g−→ C

Reading from left-to-right we get f ◦ g, but according to our definition
this is g ◦ f †.

Also, the standard convention for sequential composition of programs is
F ; G: first run F , the run G.

Alas, the composition convention is firmly entrenched, we won’t fight.

†Worse, it clashes with relational composition, see there.



Iteration 23

Definition
Let f : A → A be an endofunction. The kth power of f (or kth iterate
of f) is defined by induction as follows:

f0 = IA

fk = f ◦ fk−1

Here IA denotes the identity function on A.

Informally, this just means: compose function f (k − 1)-times with itself.

fk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k terms



Example 1 24

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

Iterating the map x 7→ x2 + 1 mod 11.



Phasespace 25

0

1

2

5
310

467

8

9

0

1

2

5

3

10

46

7

8

9



Example 2 26

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Iterating the map x 7→ x2 + 1 mod 21.



Phasespace 27

0

1

2

5

3

104

17

6

16

7

8 9

19

11

1213

14

15

18

20



General Laws 28

Without any further knowledge about f , there is not much one can say
about the iterates fk. But the following always holds.

Lemma (Laws of Iteration)

fn ◦ f = fn+1

fn ◦ fm = fn+m

(fn)m = fn·m

This should look very familiar . . .



Binary Expansions 29

A point a ∈ A is a fixed point of f if f(a) = a.
Here is an example. Write a :: L for the list L with element a prepended
and define the following operation on numbers and binary lists.

β : N × List(2) → N × List(2)
β(0, L) = (0, L)
β(x, L) = (x div 2, (x mod 2) :: L)

Now suppose we have an operator FP that, given β and a, looks for a
fixed point among the iterates a, β(a), β(β(a)), . . .

Of course, there may be none, just think about the first example from
above.



Done 30

In our situation, a fixed point always exists (why?) and we have

FP(β, (x, nil)) = (0, bin(x))

where bin(x) is the binary expansion of x.

Thinking in terms of fixed point often produces very elegant descriptions
of computations, often one-liners:

tobin(x) = last
(
FP(β, (x, nil))

)



Exercise 31

Exercise
In your favorite programming language, implement a fixed point
operation. Make sure to handle non-existent fixed points intelligently.
Then implement the conversion to binary.

Exercise
Fixed points are quite important in calculus, for example in Newton’s
method. Typical application: to compute 1/a where 0 ̸= a ∈ R we can
find a fixed point of g(x) = 2x − ax2.
How does one have to modify the fixed point operator for this to make
sense in an actual commputation?


	Functions Defined
	Composition and Iteration

