
MFCS

Cartesian Products

Klaus Sutner
Carnegie Mellon University
Fall 2022

1 Unary Operators

2 Cartesian Products

Unary Operations 2

We have defined union and intersection as binary operators. That’s fine,
but it is actually more useful to introduce a unary version.

Definition ⋃
X = { z | ∃ x (z ∈ x ∧ x ∈ X) }⋂
X = { z | ∀ x (x ∈ X ⇒ z ∈ x) }

To make sense of this, think of X as a family of sets, we want to
union/intersect all of them.

Y = ⋃
X 3

X

x

z

Y

z

Rewrite 4

These definitions may be easier to read in the following form.

⋃
X = { z | ∃ x ∈ X(z ∈ x) }⋂
X = { z | ∀ x ∈ X (z ∈ x) }

First note that nothing is lost, we can recover the binary version easily.⋃
{a, b} = a ∪ b

⋂
{a, b} = a ∩ b

Everything typechecks just fine: in our world, everything is a set, so we
can ask about the elements of the elements of X.

Destroyer of Worlds 5

Repeated application of
⋃

may destroy a set. Aka an excellent way to
implement counters.

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
{∅, {∅}, {∅, {∅}}}
{∅, {∅}}
{∅}
∅

Exercise
Does this always work?
What would happen if we used intersection instead?

Warning 6

Is clear that ⋃
∅ = ∅

But we need to be a bit careful with intersection:⋂
∅ = universe of all sets

So this is not a set and must be avoided.

For
⋂

X we always must make sure that X ̸= ∅.

Building Sets 7

Suppose we want the smallest set A ⊆ N such that

5 ∈ A, and
whenever x ∈ A, then x + 13 and x + 29 are also in A.

Here is a brutal way to build this set. Say X ⊆ N is well-behaved if
5 ∈ X and x + 13 and x + 29 in X whenever x ∈ X.

Done! We can simply set

A =
⋂

{ X ⊆ N | X well-behaved }

Is this Legit? 8

Why does this definition work?

A =
⋂

{ X ⊆ N | X well-behaved }

First off, X = N is well-behaved, so it is one of the sets on the RHS. It
follows that A ⊆ N.

Second, if X1 and X2 are well-behaved, then X1 ∩ X2 is also
well-behaved. This also works for infinite intersections, so A is also
well-behaved.

But by definition, A is the smallest well-behaved set. We’re good.

Pretty Vague 9

One annoying feature of this construction is that we learn absolutely
nothing about A, it exists in set-theory-lala-land and basta.

This type of reasoning is currently the accepted standard in math, though
a small minority complains. In CS it is somewhat more disconcerting
since we ultimately want to compute and this type of existence proof has
no computational relevance.

We really would like to understand the layout of A, we would like to
construct A in some reasonable way so we get more information. In this
example, one can get a complete description of A with little effort.

Exercise
Explain A to a 10-year old.

Looks Weird 10

Another and deeper problem is that there is an annoying sense of
circularity in this “construction.”

A is well-behaved, hence it is one of Xs on the RHS.
So we are defining A in terms of itself.

Again, a few people protest against this circularity, but, for the most
part, no one cares. This method is just too useful to be discarded.

Hilbert 11

From the paradise, that Cantor cre-
ated for us, no-one shall be able to
expel us.

D. Hilbert (1926)

Indexed Families 12

If you find unary operators scary, here is a way to avoid cognitive
challenges: an indexed family of sets is a bunch of sets Ai where i ranges
over some index set I (typically [n], N, Z, R or maybe some ordinal).⋃

i∈I

Ai = { x ∈ Ai | i ∈ I }

and likewise for
⋂

i∈I Ai.

Nothing new here, this is just syntactic sugar for
⋃

{ Ai | i ∈ I }. But
sometimes it is helpful to have a clear enumeration of the elements of X.

Calculus 13

This notation is particularly popular in calculus.

⋃
ε>0

[0, 1 − ε] = [0, 1) ⊆ R

⋂
ε>0

[0, 1 + ε] = [0, 1] ⊆ R

Exercise
As written, the index set is the positive reals. Change things so that the
index set is N, but the result is the same.

1 Unary Operators

2 Cartesian Products

Cartesian Product 15

Suppose we have two sets and we want to form the set of all pairs with
elements in the two sets. This will turn out to be one of the most useful
constructions in set theory.

Definition
The Cartesian Product of two sets A and B is

A × B = { (a, b) | a ∈ A, b ∈ B }

For example, in geometry we can think of the plane as being the
Cartesian product R × R.

Note that these pairs are ordered, in general (a, b) ̸= (b, a).

Wait a minute . . . 16

So now we have messed up our little sandbox, we are dealing with

sets element-of pairs

Remember, we wanted to make do with sets and element-of only, we have
just introduced a new type. Of course, everyone intuitively understands
pairs, but there are pesky questions: what are the elements of a pair? Do
they not have any? When are two pairs equal? And so on.

Equality of pairs is easy:

(a, b) = (c, d) ⇐⇒ (a = c) ∧ (b = d)

But the other questions are messier.

Brilliant Idea 17

Maybe we can implement pairs as sets?

In other words, maybe we can define a binary operation π on sets that
gives us pairs, but using only sets.

A little thought reveals that all we really need is

π(a, b) = π(c, d) implies (a = c) ∧ (b = d)

Of course, π(a, b) = {a, b} fails miserably.

It’s Not That Easy 18

Historically, it took some top-notch mathematicians several tries before
they found a good way of doing this.

For example, here is an attempt by Norbert Wiener:

π(a, b) = {{{a}, ∅}, {{b}}}

Felix Hausdorff came up with a slightly better solution:

π(a, b) = {{a, ∅}, {b, {∅}}}

Note we are essentially tagging a and b by 0 and 1.

https://en.wikipedia.org/wiki/Norbert_Wiener
https://en.wikipedia.org/wiki/Felix_Hausdorff

Kuratowski to the Rescue 19

No one uses these, everyone relies on Kazimierz Kuratowski’s definition.

Definition
The (Kuratowski) pair of x and y is

π(x, y) = {{x}, {x, y}}

Lemma
π(u, v) = π(x, y) implies u = x and v = y.

Exercise
Prove that this is really true and construct the actual unpairing functions
(he unary operators may come in handy).

https://en.wikipedia.org/wiki/Kazimierz_Kuratowski

Keeping it Simple 20

From now on, whenever we see (a, b) we

think of it intuitively as an ordered pair, but

if necessary, we unfold using Kuratowski’s definition.

We could write π(u, v) everywhere, but that is just pedantic. Keeping
notation simple is hugely important.
Bad notation clogs up your brain and slows you down, to the point of
complete standstill.

Intuition and Abstraction 21

Again: For humans it is critical not† to always unfold all definitions down
to the most basic level. We understand what a pair is supposed to be,
and we are happy to leave it at that.

Only under duress will we use Kuratowski’s definition directly.

Think about programming in a high level language, say, C++. No one
thinks about the corresponding assembler code while using all kinds of
higher level machinery. Those who try go insane and get nothing done.

†In fact, this is also true for computers. Theorem provers based on set theory do
not trace everything down to ∅.

A Property 22

Claim: (A × B) ∩ (A × C) = A × (B ∩ C).

Proof.
x ∈ LHS implies x ∈ A × B and x ∈ A × C. Hence x = (a, b) and
x = (a′, c) for some a, a′ ∈ A, b ∈ B, c ∈ C.
By the property of pairs, a = a′ and b = c. But then x = (a, b) ∈ RHS.

x ∈ RHS means x = (a, b) where a ∈ A and b ∈ B ∩ C. Hence
x ∈ A ∩ B and x ∈ A ∩ C. But then x ∈ LHS.

2

Note that this is slightly more complicated than the proof of, say,
distributivity last time. We need to reason about pairs in addition to
purely “algebraic” properties.

Tuples 23

Pairs can be extended to n-tuples for n ≥ 3 by a recursive construction:

(a1, . . . , an) = ((a1, . . . , an−1), an)

Lemma
(a1, . . . , an) = (b1, . . . , bn) implies ai = bi.

n-tuples are essentially the same as finite sequences or lists, though the
details of the definitions may differ. There is always a simple way to
translate back and forth.

Longer Products 24

Using the same idea we can also generalize our Cartesian products:

n×
i=1

Ai =
(n−1×

i=1
Ai

)
× An

For example, ordinary Euclidean space could be modeled by×3
i=1 R, and

n-dimensional space by×n

i=1 R.

Exercise (Left vs Right)
What if we used (a1, . . . , ak) = (a1, (a2, . . . , ak)) instead?
Would this make a substantial difference?

Obnoxious Question: n = 0, 1 ??? 25

Why would we care about this? Because arbitrary products in arithmetic
are perfectly well defined,

∏n
i=1 ai makes sense for all n ∈ N. We’d like

to have a similar setup here.

n > 2: Use recursion.

n = 2: No problem, this is how we started.

n = 1: We could just use A1, meaning a 1-tuple is just the thing itself†.

n = 0: This is the hard part. In analogy to arithmetic products∏0
i=1 ai = 1 we can use any one-element set, say {∅}.

†This is somewhat dicey, think about it.

Food for Thought 26

As one can see, our definition of arbitrary Cartesian products runs into a
few obstructions. Nothing really serious, but bothersome.

Here is another approach. Define a k-tuple over A to be a map

t : [k] → A

Basically a finite sequence or vector of elements of A.

Exercise
Develop Cartesian products based on these k-tuples.
Compare to our old Cartesian products.

	Unary Operators
	Cartesian Products

