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Disclaimer 2

Generally, computer science, that no-nonsense child of logic,
will exert growing influence on our thinking about the lan-
guages by which we express our vision of mathematics.

Yuri Manin, NAMS 2010

In recognition of this fact, I will systematically and unapologetically
emphasize the computer science angle.

Don’t worry, my PhD is in math, and my academic great-grandfather is
David Hilbert, there will be an abundance of math.

https://en.wikipedia.org/wiki/Yuri_Manin
https://en.wikipedia.org/wiki/David_Hilbert


Recall: Sets 3

Definition
A set is an arbitrary collection of objects.

Of course, this is not much of a definition, but you’ve got to start
somewhere. In the words of Georg Cantor, the creator of set theory:

By an “aggregate” we are to understand any collection into
a whole M of definite and separate objects m of our intuition or
our thought. The objects are called “elements” of M . In signs
we express this thus: M = {m}.

Note the old-fashioned notation, we will avoid this like the plague.

https://en.wikipedia.org/wiki/Georg_Cantor


Sets are Great 4

As it turns out, one can implement all of mathematics and theoretical
computer science in set theory, all we need is two basic notions:

set element-of

On the face of it, this is a huge surprise: one would suspect that sets are
nowhere near powerful enough to express concepts such as natural
number, prime, group, field, real number, differentiable function,
probability measure, finite state machine, computable function,
complexity class, and so on.

We can use sets as a reference implementation that we can go back to
whenever questions arise.



Sets Suck 5

Here is the way one formally defines the reals in set theory:

N finite von Neumann ordinals

Z equivalence classes of pairs of naturals

Q equivalence classes of pairs of integers

R Dedekind cuts: particular sets of rationals

If you want to drive someone totally nuts, use equivalence classes of
Cauchy sequences in the last step (yup, that really happened in my calc 1
class a long time ago)†.

†If you are interested, take a look at numbers. Some extra material will be posted
at mfcs.

http://www.cs.cmu.edu/~sutner/pdf/numbers.pdf
http://www.cs.cmu.edu/~sutner/mfcs.html


The RealWorldTM 6

No one ever unfolds the definitions all the way to
the bottom.

Instead, we use the construction of N as a way to sharpen our intuition
and develop a clear understanding of the naturals. From then on, we just
think of the naturals as a new, basic type with certain properties (which
are now established beyond any doubt). We refuse to climb back down
unless there is some compelling reason.

Rinse and repeat: Z, Q and R work exactly the same way.

This is perfectly enough for all of ordinary math and TCS†.

†If you work in set theory, all bets are off; see Solovay model. We don’t and we
don’t care.

https://en.wikipedia.org/wiki/Solovay_model


Understanding Definitions 7

intuitive meaning

intuitive meaning

intuitive meaning

formal meaning

examples

counterexamples

basic results

links to other concepts

If several of these items are exceedingly difficult to handle (in particular
the early ones), maybe the definition is wrong and needs to be changed.



Extensionality Principle 8

Two sets are considered to be the same iff they contain precisely the
same elements.

A = B ⇐⇒ ∀ z (z ∈ A ⇔ z ∈ B)

This idea† actually dates back to the 17th century, it was first mentioned
by Gottfried Wilhelm Leibniz.

Two objects are the same if, and only if, they both
have exactly the same properties.

†principium identitatis indiscernibilium

https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz


Properties of Sets? 9

So far, the only properties of a set A we can talk about is membership: is
x ∈ A for some arbitrary x. Later we will see others, like cardinality, but
not yet.

Together with Leibniz’s principle we get Extensionality.

As a consequence of Extensionality, order of elements is irrelevant and
there are no multiple occurrences in sets.

For example, {1, 2, 3} = {3, 2, 1, 2, 1, 3} simply because the elements of
both sets are the same†.

†In CS, multisets that do allow for multiple occurrences are quite popular, but
that’s a different beast. We will see how to define them in terms of sets.



Set Formation 10

To obtain complicated sets we can collect all objects z (really sets) with
a certain property P (z) into one set:

A = { z | P (z) }

Very often one selects elements from some larger collection B that has
already been constructed.

A = { z ∈ B | P (z) }

This is called set formation or comprehension or or separation, in
unbounded and bounded form.



Examples 11

[n] = { z ∈ N | 1 ≤ z ≤ n }

Prime = { z ∈ N | z is prime }

[0, 1) = { z ∈ R | 0 ≤ z < 1 }

Q = { a/b | a, b ∈ Z, b > 0 }

The last “definition” is really criminal. Why?

To fix it, one has to get involved in the equivalence class business
mentioned above. We won’t.



Full Disclosure 12

The reason one has to be careful with unbounded comprehension

A = { z | P (z) }

is that it can lead to paradoxes, the most famous one being Russell’s
famous “set”

R = { z | z /∈ z }

Then R ∈ R implies R /∈ R, and R /∈ R implies R ∈ R.

☠☠☠☠☠☠☠
We should use only the second, bounded version, but that requires more
work. So, we’ll mostly ignore this problem.



Extension versus Intension 13

There is a subtlety hiding in these definitions: by extensionality, the
description of a set is in a sense irrelevant, all that matters are the actual
elements.

Here is an example of two sets of natural numbers:

A = {1, 2}
B = { n ∈ N+ | xn + yn = zn has solution in N+ }

Then A = B, but this is Fermat’s Last “theorem” and requires a very
complicated proof.

So equality of sets can be exceedingly complicated even when one of the
sets in question is finite and the other only requires high-school math.
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Set Operations 15

Sets are just a data type. In order to get any use out of them we need
operations.

This is no different from linked lists being useless unless one has
implemented operations such as insert, delete, . . .

We have comprehension to construct sets, but that is not really a set
operation†. We want algebraic operations that, say, take two sets as
input and return one as output. To this end, we look at a few very simple
choices for the comprehension property P (z).

A = { z | P (z) }

†Comprehension turns set properties into sets.



Basic Operations 16

For example, P could be a conjunction, disjunction or exclusive-or.

union A ∪ B = { z | z ∈ A ∨ z ∈ B }
intersection A ∩ B = { z | z ∈ A ∧ z ∈ B }

symmetric diff. A ⊕ B = { z | z ∈ A ⊕ z ∈ B }

{1, 2, 3} ∩ {2, 3, 4, 5} = {2, 3}
{1, 2, 3} ∪ {2, 3, 4, 5} = {1, 2, 3, 4, 5}
{1, 2, 3} ⊕ {2, 3, 4, 5} = {1, 4, 5}



And Negation? 17

How about using negation in the predicate P?

complement Ac = { z | z /∈ A }

Looks perfectly fine, but it is one of the nasty cases where we actually do
not construct a set (just a so-called proper class). Ac is too big to be a
set.
We fix this by allowing only relative complements:

B \ A = { z ∈ B | z /∈ A }

Often there is a ambient set B (the universe of discourse), and we are
only allowed (and only interested in) to take complements relative to B.



Basic Properties 18

Given these Boolean operations on sets, what can we say about their
basic properties?

There are actually quite a few. For example, we have distributivity:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Perhaps obvious, but how do we prove this? Think about convincing a
proof checker.



A Boring Proof 19

To show:
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

We prove LHS ⊆ RHS and RHS ⊆ LHS

LHS ⊆ RHS:

Let x ∈ LHS. Then x ∈ A and x ∈ B ∪ C.
If x ∈ B, then x ∈ (A ∩ B) and thus in RHS,
If x ∈ C, then x ∈ (A ∩ C) and thus in RHS.



And Back . . . 20

RHS ⊆ LHS:

Let x ∈ RHS. Then x ∈ (A ∩ B) or x ∈ (A ∩ C).

In the first case, x ∈ A ∩ B, we have x ∈ A and x ∈ B, whence
x ∈ (B ∪ C) and thus x ∈ LHS.

In the second case, x ∈ A ∩ C, we have x ∈ A and x ∈ C, whence
x ∈ (B ∪ C) and thus x ∈ LHS.



Yuck 21

This has really nothing much to do with set theory, it’s all about tedious
reasoning in propositional logic.

Bad News: For some proofs and for computer programming, this kind of
reasoning is utterly inevitable: boring case by case analysis—but you
can’t fall asleep, every single error is fatal.

Good News: We can improve things slightly by using propositional logic
directly. Of course, this works best if one knows the fundamental laws of
propositional logic.



PropLogic Approach 22

Use propositional variables a, b and c.
Here a means x ∈ A, b means x ∈ B and c means x ∈ C.

Then we really need to show that

a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)

That’s a basic law†, but in case you forgot, here is the reasoning:

Assume a is true, then the LHS simplifies to b ∨ c. But a ∧ b and a ∧ c
similarly simplify to b and c, so the RHS also simplifies to b ∨ c.

If a is false, the LHS is false. The two conjunctions on the RHS are also
false, and the whole RHS is false.

†The intuitive form of distributivity: “multiplication” distributes over “addition.”



More Properties 23

Associativity
x ∪ (y ∪ z) = (x ∪ y) ∪ z and
x ∩ (y ∩ z) = (x ∩ y) ∩ z.

Commutativity
A ∪ B = B ∪ A and A ∩ B = B ∩ A.

Distributivity
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Idempotence
A ∪ A = A and A ∩ A = A.

Absorption
A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A.



Seeking Analogies 24

Humans are very familiar with basic arithmetic, we understand addition
and multiplication very well (at least on the integers).

This makes it very tempting to think of other operations as being
somehow analogous to addition and multiplication.

After a bit of poking around, one might come up with the following
correspondence:

arithmetic sets prop. logic
addition union or
multiplication intersection and

Keeping this in mind makes it easier to deal with the new structures.



Psych Warning 25

In fact, one even writes + and · for the operations in all three cases, to
emphasize similarity.

BUT: analogies only go so far. In some places, the similarity simple
breaks down.

Here are some identities that hold in sets and prop. logic, but not in
arithmetic (idempotence, wrong distributivity, absorption)

x + x = x x · x = x

x + y · z = (x + y) · (x + z)
x + x · y = x

Not to worry, George Boole, who introduced the algebraic approach to
logic, also had problems with this in the 19th century.

https://en.wikipedia.org/wiki/George_Boole
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