
Linux Porting Chris Palow
ESM consists of three parts for the viewers:
the overlay node, a QuickTime player, and
the program that coordinates the interaction
between the other two.

Problem: Find a QuickTime player for
Linux:

• Has to support a video and an audio
codec we can broadcast
• Has to support receiving the
broadcast in a RTP stream

Possible Solution: Open source players
• They support codecs we use
• They don’t support the
encapsulation in RTP streams.

Solution: Emulate the Windows Apple
QuickTime Player.

• Not “true” emulation.
• ISA is the same just the system calls
that are different
• Wine wraps Windows system calls
to their Linux equivalents.

Not a problem: ESM’s overlay code is
UNIX native

• it works in Windows by using the
Windows analog of Wine: Cygwin.

Problem: Program that coordinates all the
individual components that make up our
system was Windows specific

Solution: Rewrite the code to be more
portable

Source

ESMS – Log
Server

Encoders

ESM Node
(Windows Clients)

ESM Node
(Linux Client)

Logs

Data

Source Monitor
ESMS Monitor

Online
Monitor

Status Reports

Online Monitoring System Jiin Joo Ong
Problem: How do we “view” the overlay network?

• Ideally, want to know n2 bandwidth, delay, etc.
• Want an easy way to spot errors in the system, aid debugging.

Solution: Dedicated machine that receives feedback from all components of the system
• Each ESM Node sends UDP packets reporting their status.
• Source Monitor, Web Server Monitor and Esms Monitor give detailed status report.
• Information is parsed and presented in graphical format instantly. (~10 sec.)
• Web access to information, ubiquitous monitoring of the system.

Robustness of Key Components
Source Monitor and Esms Monitor serve as process restart agents.

• Detects unusual activity. (e.g. source process / Esms process died)
• Auto-Recovery! Restarts process, automatically adjust logging mechanism immediately (~5 sec.)

Web Panel

ESM Node
(Mac Clients

Under Construction)

ESMS – Log Server Brian Goodman
Overlay tree gets quite large (we hope). How to gather performance/error logs in a robust and scalable fashion?
Constraint: We would like to avoid recompiling the kernel.

Problem: Linux has a default limit of 512 threads per process
•Solution: Don’t use threads!

Problem: Select() can poll only 1024 file descriptors by default (we need 2 per connection!)
•Solution: Multiple instances per machine– run each one on a different port
•Solution: Multiple machines–give clients a list of machine/port pairs; they can pick one randomly for each connect

Problem: On a dropped connection/failed ESMS, how much data was lost in transit? What should be re-sent?
•Solution: Keep a buffer of recently sent data, at least as large as the kernel buffer
•Solution: On reconnect, sent byte number to begin from, entire buffer– ESMS can simply seek() and begin appending!

