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Abstract
In real life problems, agents are generally faced
with situations where they only have partial or no
knowledge about their environment and the other
agents evolving in it. In this case all an agent can do
is reasoning about its own payoffs and it cannot rely
on the classical equilibria through deliberation. To
palliate to this difficulty, we introduce the satisfac-
tion principle from which an equilibrium can arise
as the result of the agents individual learning ex-
periences. We define such an equilibrium and then
we present different algorithms that can be used to
reach it. Finally, we present experimental results
and theoretical proofs that show that using learning
strategies based on this specific equilibrium, agents
will generally coordinate themselves on a Pareto-
optimal joint strategy, that is not always a Nash
equilibrium, even though each agent is individually
rational, in the sense that they try to maximize their
own satisfaction.

1 Introduction
”Even if all members of a group would benefit if all co-
operate, individual self-interest may not favor cooperation.
The prisoner’s dilemma codifies this problem and has been
the subject of much research, both theoretical and experi-
mental. Results from experimental economics show that hu-
mans often act more cooperatively than strict self-interest
would seem to dictate. One reason for this may be that if
the prisoner’s dilemma situation is repeated, it allows non-
cooperation to be punished more, and cooperation to be re-
warded more, than the single-shot version of the problem
would suggest...”; Quoted from [Wikepedia, 2006]. This pa-
per takes this road by considering situations where agents
have partial or no knowledge about their environment and the
other agents evolving in it.

Game theory provides a general framework for decision
making in multi-agent environments, though, general game
models assume full knowledge and observability of the re-
wards and actions of the other agents. In real life problems,
however, this is a strong assumption that does not hold in
most cases.

A first game model proposed by [Harsanyi, 1967] consid-
ering incomplete information are Bayesian games. Theses

games allow the modeling of unknown information as differ-
ent agent types and a Nature’s move that selects randomly
each agent’s type according to some probability distribution
before each play. The agent must choose the action that max-
imizes its reward considering the probabilities it associates to
each of the other agents’ types and the probabilities it asso-
ciates to the actions of the other agents when they are of a
certain type. However, the concept of Nash equilibrium in
these games can be troublesome if not all agents have the
same common beliefs about the probability distribution of all
agents’ types. Furthermore, a Nash equilibrium requires that
each agent knows the action-space and the corresponding set
of strategies of the other agents, which is not always the case
when an agent faces unknown agents.

Another recent approach based on Bayesian games is the
theory of learning in games which relaxes the concept of equi-
librium. Instead of considering an equilibrium as the result of
a deliberation process, they consider an equilibrium to be the
result of a learning process, over repeated play, and they de-
fine the concept of self-confirming equilibrium [Dekel et al.,
2004] as a state in which each agent plays optimally consid-
ering their beliefs and history of observations about the other
agents’ strategies and types. However, they showed that if
an agent does not observe the other agents’ actions, then the
set of Nash equilibria and self-confirming equilibria may dif-
fer. While self-confirming equilibrium is a very interesting
concept and worth consideration, we note that when an agent
faces unknown agents and does not observe the other agents’
actions, thinking rationally on possibly false beliefs may after
all, not be optimal.

In order to address this problem, we will also consider that
an equilibrium is the result of a learning process, over re-
peated play, but we will differ in the sense that we will pursue
an equilibrium that arises as the result of a learning mecha-
nism, instead of rational thinking on the agent’s beliefs and
observations. To make this equilibrium possible, we intro-
duce the satisfaction principle, which stipulate that an agent
that has been satisfied by its payoff will not change its strat-
egy, while an unsatisfied agent may decide to change its strat-
egy. Under this principle, an equilibrium will arise when all
agents will be satisfied by their payoff, since no agent will
have any reason to change their strategy. From now on, we
will refer to this equilibrium as a satisfaction equilibrium.

We will show that if the agents have well defined satisfac-
tion constraints, Pareto-optimal joint strategies that are not



Nash equilibria are satisfaction equilibria and that henceforth,
cooperation and more optimal results can be achieved using
this principle, instead of rational thinking.

In this article, we will first introduce the game model we
will use to take into account the constrained observability of
the other agents’ actions and rewards and we will also present
the different concepts we will need to analyze a game in terms
of satisfaction. Afterward, we will present different algo-
rithms that converge towards satisfaction equilibria with ex-
perimental results showing their strengths and drawbacks in
some specific games. Finally, we will conclude with future
directions that can be explored in order to achieve better re-
sults.

2 Related Work
The idea of investigating the equilibrium selection via learn-
ing is not new. Thus, Claus and Boutillier [2000] have ad-
dressed this problem through on-policy learning. The under-
lying principle is that each agent’s individual utilities shift
to reflect the frequency with which the agent has achieved a
desirable reward, causing the agents to settle towards comple-
mentary policies in which both agents benefit. Unfortunately,
agents using this technique do not always settle to an opti-
mal equilibrium (Pareto-optimal Nash Equilibrium). In the
same vein, Lauer [2000] have proposed a simple reinforce-
ment learning technique based on a pre-arranged coordination
mechanism, in which the agents retain as their optimal policy
the first action that successfully maximized reward. While
this approach always find an optimal policy in deterministic
cooperative games, its greedy approach makes it unable to
converge toward a more cooperative and Pareto efficient so-
lution in the case of the prisoner’s dilemma (PD) for instance.
In the same context, kapetanaki and colleagues [2002] have
used biased exploration technique to favor convergence to an
optimal equilibrium in cooperatives games with stochastic re-
wards. To this end, they introduced a FQM (Frequency Max-
imum Q value) heuristic based on the maximum reward re-
ceived for a given action and the frequency with which that
reward has been observed. By doing so, this approach in-
creases the likelihood of convergence to an optimal equilib-
rium in stochastic cooperative games, but does not guaran-
tee it. As the previous approach of Kapetanaki et al. [2002]
this approach also tries to converge toward a Nash equilibria
and consequently it cannot find Pareto-efficient solutions in
games as the PD.

The most directly related work to our approach is Fulda’s
approach [Fulda and Vantura, 2004] where authors present
an equilibrium selection algorithm for reinforcement learn-
ing agents that incrementally adjusts the probability of exe-
cuting each action based on the desirability of the outcome
obtained in the last time step. In deterministic environments
with one or more coordination equilibria, the approach learns
to play a coordination equilibria1. The authors showed with
empirical data, that this approach is also effective in stochas-
tic environments. In the context of other games than coor-
dinating games [Stimpson et al., 2001] have adopted the al-
gorithm and notation presented in [Karandikar and Mookher-

1A coordination equilibria maximizes payoff of all players, but
does not always exists

jee, 1998] to a satisfying and learning cooperation in the pris-
oner’s dilemma (PD) and a n-player version of this problem
called the multi-agent social dilemma (MASD). Those au-
thors described a satisfycing learning strategy for the PD and
MASD and present evidence that stable outcomes other than
the Nash equilibria are possible. While this approach gave
good performances on the PD and MASD problems, it is not
guaranteed to converge and has not been extended and studied
for other games. Here, we pursue in the same vein by extend-
ing the concept to address general games (not only the PD or
the coordinating games) under imperfect private monitoring.

2.1 Game Model
In this paper, the considered game model is a simplified re-
peated Bayesian game in which Nature (i) fixes, once and for
all, the types of all agents at the beginning of the learning
process, such that only the joint action of the agents affect
their payoffs and; (ii) distributes the individual outcomes to
each agent according to observation functions that take in pa-
rameter the joint action and returns the outcome observed by
the agent. We also used a modified reward function that takes
an outcome and returns its associated reward. This has been
done in order to let the agents observe their own rewards but
not the other agents’ actions.

Formally, we define the game as a tuple
(n,A,Ω, O1, O2, . . . , On, R1, R2, . . . , Rn) where n de-
fines the number of agents, A defines the joint action space
of all agents, e.g. A = A1 × A2 × . . . × An where Ai

represents the set of actions agent i can do, Ω is the joint
outcome space,Ω = Ω1 ×Ω2 × . . . ×Ωn where Ωi is the set
of possible outcomes for agent i, Oi the observation function
Oi : A → Ωi which returns the observed outcome for agent
i associated to the joint action of all agents and finally Ri

the reward function Ri : Ωi → R of agent i. Each agent
participating in the game only knows its own action set Ai

and reward function Ri. To compute its reward, agent i is
given the outcome of the game o ∈ Ωi corresponding to the
joint action of the agents. However, since the agents do not
know their observation function Oi, they do not know which
joint action led to this outcome.

2.2 Satisfaction function and equilibrium
To introduce the satisfaction principle in the game model pre-
viously introduced, we add a satisfaction function Si : R →
{0, 1} for each agent i, that returns 1 if the agent is satisfied
and 0 if the agent is not satisfied. Generally, we can define
this function as follows:

Si(ri) =
{

0 if ri < σi

1 if ri ≥ σi

where σi is the satisfaction threshold of agent i representing
the threshold at which the agent becomes satisfied, and ri is
a scalar that represents its reward.
Definition 1. An outcome o is a satisfaction equilibrium if
all agents are satisfied by their payoff under their satisfac-
tion function and do not change their strategy when they are
satisfied.

(i) Si(Ri(o)) = 1 ∀i
(ii) st+1

i = st
i ∀i, t : Si(Ri(ot)) = 1



st+1
i defines the strategy of agent i at time t+1, st

i its strategy
at time t and ot the outcome observed at time t. Condition (i)
states that all agents must be satisfied by the outcome o, and
condition (ii) states that the strategy of an agent i at time t+1
must not change if it was satisfied at time t. This is necessary
in order to have an equilibrium.

We can now represent a satisfaction matrix by transforming
a normal form game matrix with the satisfaction function of
each agents. For example, the figure 1 shows the prisoner’s
dilemma game matrix with its transformed satisfaction matrix
when both agents have a satisfaction threshold set to -1.

C D
C -1,-1 -10,0
D 0,-10 -8,-8

=⇒
C D

C 1,1 0,1
D 1,0 0,0

(∀i| : σi = −1)

Figure 1: Prisoner’s dilemma game matrix (left) and satisfac-
tion matrix (right).

We can easily see that in this example, the only satisfaction
equilibrium is the joint strategy (C,C). While some might
argue that in this example the equilibrium would be weak,
since row agent can play D and still be satisfied if column
agent continues to play C, we recall that if an agent is satis-
fied, it would never change its strategy (see definition 1), and
therefore, a satisfaction equilibrium is always a strong equi-
librium. If row agent would decide to change its strategy to
D, then column agent would not be satisfied by the outcome
(D,C), which would eventually result in a change of strategy
to D by column agent. The end result is that the initial strat-
egy change by row agent eventually result in an unsatisfying
outcome (D,D), which would eventually make it go back to
C. This supports the fact that when agents are satisfied, they
should not change their strategy.

As a second remark, if we look back at figure 1, we can
observe that the satisfaction equilibrium (C,C) is a Pareto-
optimal strategy of the original game. This was the case in
this example because we set both satisfaction thresholds to
−1, which was the reward of the Pareto-optimal joint strategy
of each agents. From this, we can conclude theorem 2.

Theorem 2. In any game the outcome O(s) such as s is the
Pareto-optimal joint strategy; and its equivalent outcomes2

are the only satisfaction equilibria if σi = Ri(O(s)) ∀i.

Proof. Let G = (n,A,Ω, O,R1, . . . , Rn) be a game such
that it contains a Pareto-optimal joint strategy s. Now, let’s
define the satisfaction threshold of all agents such that :
σi = Ri(O(s)) ∀i. To prove that O(s) and its equivalent
outcomes are the only satisfaction equilibria in game G, we
will show that O(s) is a satisfaction equilibria and that for
all joint strategies s′ where ¬(O(s′) ≡ O(s)), O(s′) is not a
satisfaction equilibrium.

First let’s show that O(s) is a satisfaction equilibrium. We
have that for all agents i, Ri(O(s)) = σi. By definition of the

2We consider that an outcome o′ is equivalent to another outcome
o if the rewards of all agents are the same in o and o′ : Ri(o) =
Ri(o

′)∀i

satisfaction function, we conclude that Si(Ri(O(s))) = 1
∀i. Therefore, the outcome O(s) is a satisfaction equilib-
rium. Similarly, all equivalent outcomes will be satisfac-
tion equilibrium since if Ri(O(s)) = Ri(O(s′)) ∀i, then
Si(Ri(O(s′))) = 1 ∀i and we have that O(s′) is a satisfaction
equilibrium.

To show that all other outcomes O(s′) such that ¬(O(s′) ≡
O(s)) are not satisfaction equilibrium, we will consider 2
cases: either strategy s Pareto-dominates s′ or either strategy
s′ is not Pareto-comparable to s. These are the only 2 cases
we must consider since ¬(O(s′) ≡ O(s)) and s is Pareto-
optimal.

Case 1 : Strategy s Pareto-dominates strategy s′.
Since s Pareto-dominates s′, there exists an agent i such

that Ri(O(s′)) < Ri(O(s)). Therefore, since σi =
Ri(O(s)), we conclude that Si(Ri(O(s′))) = 0. Conse-
quently, O(s′) is not a satisfaction equilibrium because there
exists an agent i that is not satisfied by the joint strategy s′.

Case 2 : Strategy s′ is not Pareto-comparable to strategy s.
Since s and s′ are not Pareto-comparable, there exists an

agent i such that Ri(O(s′)) > Ri(O(s)) and an agent j
such that Rj(O(s′)) < Rj(O(s)). Therefore, since σj =
Rj(O(s)), we conclude that Sj(Rj(O(s′))) = 0. Conse-
quently, s′ is not a satisfaction equilibrium because there ex-
ists an agent j that is not satisfied by the joint strategy s′.

Conclusion : If strategy s is Pareto-optimal, the outcome
O(s) and its equivalent outcomes are the only satisfaction
equilibria if σi = Ri(O(s)) ∀i.

Therefore, we see that a major part of the problem of coor-
dinating the agents on a Pareto-optimal joint strategy is to de-
fine correctly the satisfaction thresholds of each agent. While
we have assumed so far that these thresholds were fixed at the
beginning of the learning process, we will show algorithms in
the last section that tries to maximize the satisfaction thresh-
old of an agent such that it learns to play its optimal equilib-
rium under the other agents’ strategies.

2.3 Satisfying strategies

Similarly to the concept of dominant strategies, we can define
a satisfying strategy as a strategy si for agent i such that it is
always satisfied when it plays this strategy. This is illustrated
in figure 2.

A B
A 1,0 1,0
B 1,1 0,0

Figure 2: Games with satisfying strategies.

In this game we see that row agent has a satisfying strategy
A. Therefore, if row agent starts playing strategy A, then col-
umn agent will be forced to accept an outcome corresponding
to joint strategy (A,A) or (A,B). This is problematic since
none of these outcomes are satisfaction equilibria. The effects
of such strategies on the convergence of our algorithms will
be showed with experimental results in the next sections.



2.4 Games with multiple Satisfaction Equilibria
In some games, more than one satisfaction equilibrium can
exists depending on how the satisfaction thresholds are de-
fined. For example, we can consider the battle of sexes, pre-
sented in figure 3 with satisfaction thresholds set to 1.

B F
B 2,1 0,0
F 0,0 2,1

=⇒
B F

B 1,1 0,0
F 0,0 1,1

(∀i| : σi = 1)

Figure 3: Battle of sexes game matrix (left) and satisfaction
matrix (right).

What will happen when more than one satisfaction equi-
librium exists is that both agents will keep or change their
strategy until they coordinate themselves on one of the satis-
faction equilibrium. From there, they will keep playing the
same action all the time.

2.5 Mixed Satisfaction Equilibrium
In some games, such as zero sum games with no tie strategy3,
it is impossible to find a satisfaction equilibrium in pure strat-
egy, unless we set the satisfaction threshold to the minimum
possible reward. However, higher expected rewards could be
obtained by playing mixed strategies. This can be achieved
by playing a mixed satisfaction equilibrium.

Definition 3. A mixed satisfaction equilibrium is a joint
mixed strategy p such that all agents are satisfied by their
expected reward.

Si(Ei(p)) = 1 ∀i

Ei(p) represents the expected reward of agent i under the
joint mixed strategy p. While this works in theory, the only
way an agent will have to compute its expected reward will
be to compute the average of the past n rewards it obtained
under its current strategy, since it does not know the strategy
of the other agents.

3 Learning the Satisfaction Equilibrium
We now present an algorithm that can be used by agents to
learn over time to play the satisfaction equilibrium of a game.

3.1 Pure Satisfaction Equilibrium with fixed
thresholds

The most basic case we might want to consider is the case
where an agent tries to find a pure strategy that will always
satisfy its fixed satisfaction threshold.

Our algorithm 1 implements the satisfaction principle in
the most basic way: if the agent is satisfied, it keeps its current
action, else it chooses a random action in its set of actions to
replace its current action.

Here, the threshold K defines the allowed number of re-
peated plays and the ChooseAction function chooses a ran-
dom action uniformly within the set of actions Ai of the

3In zero sum games, a tie strategy is a pure joint strategy s such
that the reward of all agents is 0.

Algorithm 1 PSEL: Pure Satisfaction Equilibrium Learning
Function PSEL(σi, K)
si ← ChooseAction()
for n = 1 to K do

Play si and observe outcome o
if Ri(o) < σi then

si ← ChooseAction()
end if

end for
return si

agent. Under this learning strategy, once all agents are satis-
fied, no agent will change its strategy and therefore all agents
reach an equilibrium. Once the agent has played K times,
it returns its last chosen strategy. Evidently, in games where
there exists no satisfaction equilibrium under the agents’ sat-
isfaction thresholds, they will never reach an equilibrium.
Furthermore, if agent i has a satisfying strategy si, then we
are not sure to reach a satisfaction equilibrium if si does not
lead to an equilibrium (see figure 2 for an example).

3.2 Using an exploration strategy
While we have considered in our previous algorithm 1 that
the ChooseAction function selects a random action within
the set of actions of the agent, we can also try to implement
a better exploration strategy such that actions that have not
been explored often could have more chance to be chosen. To
achieve this, the agent can compute a probability for each ac-
tion, that corresponds to the inverse of the times it has chosen
them, and then normalize the probabilities such that they sum
to 1. Finally, it chooses its action according to the resulting
probability distribution. The results presented in section 3.3
will confirm that using this exploration strategy, instead of
a uniform random choice, offers a slight improvement in the
average number of plays required to converge to a satisfaction
equilibrium.

3.3 Empirical results with the PSEL Algorithm
We now present results obtained with the PSEL algorithm in
different games. We have used 2 usual games, i.e. the pris-
oner’s dilemma with satisfaction thresholds set to −1 for both
agents (see figure 1 for the corresponding satisfaction matrix)
and the battle of sexes with satisfaction thresholds set to 1
for both agents (see figure 3 for the corresponding satisfac-
tion matrix). We also used a cooperative game presented in
figure 4 with satisfaction thresholds set to 3.

A B C
A 0,0 1,1 0,0
B 2,2 0,0 0,0
C 0,0 0,0 3,3

=⇒
A B C

A 0,0 0,0 0,0
B 0,0 0,0 0,0
C 0,0 0,0 1,1

(∀i| : σi = 3)

Figure 4: Cooperative game matrix (left) and satisfaction ma-
trix (right).

In this cooperative game, we set the satisfaction thresholds
to 3 for both agents such that the only satisfaction equilib-
rium is joint strategy (C,C). Finally, we also used a bigger



game to verify the performance of our algorithm when the
joint strategy space is bigger. This game is presented in the
following figure 5.

A B C D E F G H
A 0,0 0,0 -1,4 0,0 2,-2 0,0 3,0 0,0
B 1,2 0,0 0,0 3,0 0,0 0,0 0,3 1,1
C 0,0 3,3 0,0 1,1 0,0 0,0 2,2 0,0
D 4,4 0,0 5,1 0,2 2,2 1,4 0,0 0,0
E 0,1 0,0 0,0 5,5 0,0 0,0 2,1 0,0
F 0,4 2,2 0,2 0,0 0,0 3,3 0,0 4,4
G 0,0 5,3 3,0 0,0 -1,3 0,0 2,-1 0,0
H 0,0 2,4 1,1 0,0 0,0 -3,2 0,0 0,0

Figure 5: Big game matrix.

In this big game, the satisfaction thresholds were set to 5
for both agents and therefore, the only satisfaction equilib-
rium was joint strategy (E,D).

For each of these four games, we ran 5000 simulations,
consisting of 5000 repeated plays per simulation, varying the
random seeds of the agents each time. In figure 6, we present
for each of these games the number of possible joint strate-
gies, the number of SE, the convergence rate to a SE and a
comparison of the average number of plays required to con-
verge to such an equilibrium (with 95% confidence interval)
with the random and exploration strategies presented.

In each of these games, the SE were corresponding to
pareto-optimal joint strategies and the satisfaction thresholds
were set according to theorem 2. In all cases, we always
converged to a SE within the allowed 5000 repeated plays.
Therefore, we see from these results that when the satis-
faction thresholds are well defined, we seem to eventually
converge toward a Pareto-optimal satisfaction equilibrium4

(POSE).

3.4 Problematic games and convergence problems
The previous results were quite satisfying provided that we
reach a POSE in all cases. However, we will see that some
specific payoff structures can pose problem to the efficiency
of this algorithm. For example, let’s suppose we have a game
as in figure 7.

A B C
A 1,1 0,1 0,1
B 1,0 1,0 0,1
C 1,0 0,1 1,0

=⇒
A B C

A 1,1 0,1 0,1
B 1,0 1,0 0,1
C 1,0 0,1 1,0

(∀i| : σi = 1)

Figure 7: A problematic game matrix (left) and satisfaction
matrix (right).

In this game, there exists a unique Pareto-optimal joint
strategy (A,A). With the satisfaction thresholds set to 1 for
both agents, the corresponding satisfaction matrix is the same
as the original game matrix. But, what we can see in this

4We define a Pareto-optimal satisfaction equilibrium as a joint
strategy that is a satisfaction equilibrium and also Pareto-optimal.

example is that we will never reach the POSE (A,A) unless
both agents starts with strategy A. Effectively, if one of the
agent plays A but the other agent plays B or C, then the agent
playing A will never be satisfied until it changes its strategy
to B or C. This problem comes from the fact that an agent
playing B or C will always be satisfied when the other agent
plays A, and therefore, it will never change its strategy to A
when the other agent plays A. Also, there is no point where
both agents are unsatisfied that could allow a direct transition
to joint strategy (A,A). From this, we conclude that if both
agents does not start at the point of equilibrium (A,A) they
will never reach an equilibrium since there exists no sequence
of transitions that leads to this equilibrium.

Furthermore, in games where satisfying strategies exists
(see figure 2), the results shown in figure 8 effectively show
that the convergence rate of the PSEL algorithm is dramati-
cally affected by such strategies.

Figure 8: Convergence rate to a SE in problematic games with
the PSEL algorithm using the exploration strategy.

Game |A| conv. rate (%)
Problematic Game 9 10.88

Game with satisfying strategy 4 33.26

3.5 Convergence of the PSEL algorithm
While we have already showed that the PSEL algorithm does
not work in all games, there is a specific class of games where
we can easily define the convergence probability of the PSEL
algorithm according to theorem 4.

Theorem 4. In all games where all agents have the
same satisfaction in all outcomes, i.e. (Si(Ri(o)) =
Sj(Rj(o))∀i, j, o), the PSEL algorithm, using a uniform ran-
dom exploration, will converge to a SE within K plays with
probability 1− qK where q = 1−nSE/|A| and the expected
number of plays required to converge is given by |A|/nSE .5

Proof. Let a game G = (n,A,Ω, O,R1, . . . , Rn) and the
satisfaction thresholds of all agents be defined such that
Si(Ri(o)) = Sj(Rj(o))∀i, j, o. We have that, by definition
of the satisfaction thresholds, in any outcome o, all agents are
all satisfied or all unsatisfied by outcome o. In the case where
all agents are satisfied, the PSEL algorithm has converged to
a satisfaction equilibrium and the agents will keep playing the
same strategy. We will therefore consider the case where all
agents are unsatisfied. In this situation, every agent may de-
cide to change its strategy or not and, since all agents use a
random uniform distribution to choose their new action, all
the joint strategies are equally probable to be chosen. There-
fore, the probability p that the agents immediately converge
to a SE is given by p = nSE/|A|. In the case where the
agents do not choose the right joint strategy such that they are
still all unsatisfied, the same process will repeat again with
the same probabilities, until they reach a SE and converge.
Therefore, we seek to find the probability that a first success-
ful transition to a SE happens within K play. This is given by

5|A| represents the joint action space size and nSE is the number
of SE in the game.



Figure 6: Convergence rate and plays needed to converge to a SE in different games with the PSEL algorithm.
Random Exploration

Game |A| nSE conv. rate Avg. plays Avg. plays Improvement %
Prisoner’s Dilemma 4 1 100 8.67± 0.23 6.72± 0.18 22.49

Battle of Sexes 4 2 100 1.97± 0.04 1.95± 0.04 1.02
Cooperative Game 9 1 100 8.92± 0.23 7.82± 0.19 12.33

Big Game 64 1 100 67.95± 1.89 61.51± 1.65 9.48

a geometric law where the probability of success is param-
eter p = nSE/|A|. In a geometric law, the probability that
it takes more than K trials to get a first success is given by
P (k > K) = qK where q = 1 − p. Therefore the proba-
bility that we have a first success within K trials is given by
P (k ≤ K) = 1 − P (k > K) = 1 − qK . Furthermore,
the expected number of trials required to get a first success
in a geometric law is given by E = 1/p. From these prop-
erties of the geometric law, we conclude that we will con-
verge to a SE within K plays with probability 1 − qK where
q = 1 − nSE/|A| and that the expected number of plays re-
quired to converge is given by |A|/nSE .

This will be always true in cooperative games (i.e., a game
where all agents have the same reward function) if we use the
same satisfaction threshold for all agents. In this case, since
all agents have the same rewards and satisfaction thresholds,
they will always have the same satisfaction in all outcomes.
From theorem 4, we can conclude that in such games, as
K → ∞, the convergence probability will tend toward 1.

4 Learning the Satisfaction Threshold
While the PSEL algorithm has showed interesting perfor-
mance in some games, it has the disadvantage that the sat-
isfaction threshold must correctly be set in order to achieve
good results. To alleviate this problem, we present a
new learning strategy that tries to maximize the satisfaction
threshold while staying in a state of equilibrium.

4.1 Limited History Satisfaction Learning
Algorithm

In order to achieve this, we present an algorithm that im-
plements the strategy of increasing the satisfaction thresh-
old when the agent is satisfied and decreasing the satisfaction
threshold when it is unsatisfied. We also decreases the incre-
ment/decrement over time in order to converge to a certain
fixed satisfaction threshold. This will be achieved by mul-
tiplying the increment by a certain factor within the interval
(0, 1) after each play. Moreover, we keep a limited history of
the agent’s experience in order to prevent it from overrating
its satisfaction threshold, by checking whether it was unsat-
isfied by its current strategy in the past when its satisfaction
threshold was higher than a certain threshold. We will see in
the results, that this technique really helps the convergence
rate of the algorithm compared to the case where we do not
prevent this, as in the special case where the history size will
be 0.

In this algorithm, the satisfaction threshold σi is initialized
to the minimum reward of agent i and the variable δi is used

Algorithm 2 LHSL : Limited History Satisfaction Learning
Function LHSL(δi, γi, ni)
σi ← min(ri); si ← ChooseAction()
S[0..|Ai| − 1, 0..n− 1]← a matrix initialized with true values
Σ[0..|Ai| − 1, 0..n − 1] ← a matrix initialized with min(ri)
values
while δi > εi do

Play si and observe outcome o
lastStrategy ← si; satisfied← (Ri(o) < σi); tmp← 0
if not satisfied then

si ← ChooseAction(); tmp← −δi

else if not unsatisfied with si and σi + δi in history then
tmp← δi

end if
If n > 0 add satisfied and σi in history of lastStrategy and
remove oldest values
σi ← σi + tmp; δi ← δi · γi

end while
return (si, σi)

to increment/decrement this satisfaction threshold. More pre-
cisely, δi is decremented over time, such that it tends toward
0, by multiplying it by the constant γi ∈ (0, 1) after each
play. The matrix S keeps an history of the last n states of
satisfaction for each action and the matrix Σ keeps, for each
action, an history of the last n satisfaction thresholds when
the agent played these actions. This history is used to check
before incrementing the satisfaction threshold, whether or not
the agent was unsatisfied by its current strategy in the past
when its satisfaction threshold was below its new satisfaction
threshold. Finally, after each play, we update the history of
the agent. We consider that the algorithm has converged to
the optimal satisfaction threshold when δi is lower than a cer-
tain constant εi 	 0. At this point, the algorithm returns the
satisfaction threshold and the last strategy chosen by agent
i. When all agents have converged, if they are all satisfied
by their strategy, then we can consider that we have reach a
satisfaction equilibrium since their satisfaction threshold will
be almost stable. While we are not guaranteed to converge
toward a POSE, we will see that in practice, this algorithm
yields almost a convergence rate of 100% toward the POSE
in any non problematic games.

4.2 Empirical results with the LHSL Algorithm

To test the LHSL algorithm, we have used the same 6 games
we have presented for the results with the PSEL algorithm
and we now try to learn the POSE without giving a priori
its value to set accordingly the satisfaction threshold. The
results were obtained over 5000 simulations and we show the
convergence rate to the POSE obtained with the best γi value



and history sizes we have tested6. We also compare these
results to the special case where we do not use an history,
i.e. n = 0. In all cases, δi was set to 1 and the convergence
threshold εi was set to 10−20.

In all cases, the best results, showed in figure 9, were ob-
tained with the exploration strategy we have presented in sec-
tion 3.2. In most games, except the problematic game (fig-
ure 7, we were able to get a convergence rate near 100%. We
can also see that the use of an history offers a significant im-
provement over the results we obtain without an history. As a
side note, the convergence rate of the LHSL algorithm seems
to vary a lot depending on the history sizes and gamma val-
ues. This is illustrated in figure 10.

The first graphic in figure 10 compares the results with dif-
ferent history sizes and γ values. We can see that the bigger
the history size, the closer to 1 γ must be in order to achieve
better performances. Although, in general, the more slowly
we decrement δ and the more bigger the history size is, the
better are the results. In the second graphic, we compare the
convergence rate of the 2 different exploration approaches un-
der different γ values for the prisoner’s dilemma, in the case
where no history was used. This graphic confirms that the ex-
ploration strategy presented in section 3.2 improves slightly
the convergence rate of the LHSL algorithm.

5 Discussions
Repeated games provides a formal framework to explore the
long-term relationships between agents. There is now an ex-
tensive literature on this topic where the dominant tendency
heavily relies on one crucial assumption, which does exclude
a number of important applications [Kandori, 2002]. The key
assumption in the existing literature is that agents (or players)
share common information about each other’s actions. In fact,
one should distinguish between perfect and imperfect moni-
toring, and also between public and private monitoring. In
perfect monitoring, agents commonly observe actual actions
and rewards of all agents, and in the imperfect public moni-
toring, agents observe a common signal which is an indicator
of the joint action played (e.g., the market price), but they do
not observe the other agent’s rewards. In this last case of im-
perfect private monitoring, the agents can only receive private
information (e.g., one’s own rewards). Basically, the imper-
fect private monitoring leads to two major difficulties [Kan-
dori, 2002]: (1) the games lack the recursive structure in the
sense of Abreu et al. [Abreu et al., 1991] and consequently
the set of equilibria does not possess a simple characteriza-
tion and; (2) at each moment in time, agents must conduct
statistical inference on what others are going to do, which
can be quite complex.

Thus, when agents condition their own actions on com-
monly observed events, they play a Nash equilibria of the
remaining game, which is identical to the original infinitely
repeated game. In these conditions and after any history, the
set of continuation payoffs is always equal to the equilibrium
payoff set of the repeated game. This is the idea behind the re-
cursive structure. Under private monitoring such a characteri-
zation is no longer available since at each moment t, an agent

6In these results, γi, δi, εi, σi and the history size were the same
for all agents

i determines its actions on its private history of its actions and
private signals which are only known to him. As each agent
i has its private history ht

i, the correlation device formed by
the agents’ joint private histories becomes increasingly more
complex over time, so the set of continuation payoffs changes
over the time.

The second difficulty is that checking for a “better strat-
egy” in each stage requires fairly complex statistical infer-
ence since all what they know, under private monitoring, is a
private history for each agent. In other words, agent i should
calculate conditional distribution Pr(ht

−i|ht
i) by Bayes’ rule

in each stage t and this can become increasingly more com-
plex as times passes by. Furthermore, if no prior knowledge
about the game and other agents is available, this is generally
impossible to compute.

Thus, the imperfect private monitoring is a non-trivial task
and classical game theory concepts such as best response and
Nash Equilibria cannot be computed by the agents. In order
to address this problem, we must define an equilibrium that
can arise as the result of a learning process, over repeated
play where an agent i tries to determine Pr(at

i|ht
i), that does

not require knowledge of the game matrix and observations
of the other agent’s actions and rewards. To this end, we have
introduced in this paper the satisfaction principle, which stip-
ulates that an agent that has been satisfied by its payoff will
not change its strategy, while an unsatisfied agent may decide
to change its strategy7. Under this principle, an equilibrium
will arise when all agents will be satisfied by their payoff,
since no agent will have any reason to change its strategy.
The equilibrium sustaining this principle has been called a
satisfaction equilibrium.

The satisfaction principle under imperfect private monitor-
ing presented in this paper has shown great performance in
practice, since except for some games with specific payoff
structures that could pose problems, it converges to a satis-
faction equilibrium, which is in general the Pareto optimal
solution. By doing so, we have shown that a convention or a
regularity (which is the satisfaction equilibria) amongst mem-
bers of the game when they are facing to imperfect private
monitoring, can emerged. Such a convention or regularity
opens the door to “cooperations” in DP games and to more
general results in other,; results which are more close to our
“intuitions” than the usual rational thinking.

6 Conclusion and future works
While this article covered a lot of new concepts, it laid out
only the basic theoretical foundations of the satisfaction equi-
librium. The algorithms we have presented have shown great
performance in practice, but we have seen some games with
specific payoff structures that could pose problems or rend
impossible the convergence to a satisfaction equilibrium. We
have identified possible solutions, such as allowing mixed sat-
isfaction equilibrium and trying to maximize the satisfaction
threshold, that could sometimes palliate to these problems.
Although, what we may realize is that in some games it might

7This principle takes its essence from the notion of aspiration-
based reinforcement learning in repeated games where bounded ra-
tional agents try to satisfice (in the sense of H. Simon) rather than
maximize payoffs [Bendor et al., 2001].



Figure 9: Convergence rate to a POSE in different games with the LHSL algorithm
With history Without history

Game |A| conv. rate (%) γi ni conv. rate (%) γi

Prisoner’s Dilemma 4 100 0.99 64 89.96 0.90
Battle of Sexes 4 100 0.90 16 97.60 0.80

Cooperative Game 9 99.66 0.995 128 97.62 0.95
Big Game 64 99.66 0.995 16 93.88 0.99

Problematic Game 9 9.86 0.95 128 7.88 0.50
Game with satisf. strat. 4 98.06 0.95 128 38.78 0.95
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Figure 10: Convergence rate to a POSE in the prisoner’s dilemma under different γ values, history sizes and exploration
strategies

not always be possible to converge to a satisfaction equilib-
rium, or to a POSE. What we might want to do in these games
is to converge toward a Nash equilibrium. If convergence to a
Nash equilibrium is always possible, then we may try to find
an algorithm that converges in the worst case to a Nash equi-
librium, and in the best case, to a Pareto-optimal satisfaction
equilibrium. In order to achieve this goal, the next step will be
to develop an algorithm that can converge to a Pareto-optimal
mixed satisfaction equilibrium. Also, a lot of theoretical work
needs to be done to prove and/or bound the efficiency of the
presented algorithms and identify clearly in which cases the
algorithms will converge or not to a satisfaction equilibrium.
Afterward, another long term goal is to apply the satisfac-
tion equilibrium to stochastic games in order to allow agents
to learn a Pareto-optimal joint strategy without knowing any-
thing about the other agents in those games.
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