Online Policy Improvement in Large POMDPs via an Error Minimization Search

Stéphane Ross, Brahim Chaib-draa & Joelle Pineau

School of Computer Science McGill University, Montreal, Canada

April 14th, 2007

Problem

A POMDP is a model for planning in partially observable stochastic domains.

Many problems can be represented by POMDPs:

- Robot navigation
- Human-Computer speech interface
- Medical diagnosis
- Military defense system
- etc . . .

But few can be solved ...

Outline

- POMDP
- Online Search Algorithms
- 3 AEMS: Anytime Error Minimization Search
- 4 Experiments
- 5 Future Work

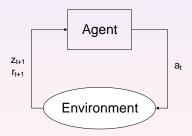
- **POMDP**
- - Motivation
 - Error Contribution
 - Heuristic Search

Partially Observable Markov Decision Process

A POMDP is defined by a tuple : $\langle S, A, Z, R, T, O, \gamma, b_0 \rangle$

- States : S
- Actions : A
- Observations : Z
- Rewards : R(s, a)

- Transition : T(s, a, s') = P(s'|s, a)
- Perception : O(s', a, z) = P(z|s', a)
- Discount : $\gamma \in [0, 1)$
- Initial belief : b₀



Belief State

Probability distribution over states.

Sufficient statistic of the complete history:

•
$$b_t(s) = P(s_t = s | b_0, a_0, z_1, a_1, z_2, \dots, a_{t-1}, z_t)$$

It can be maintained easily after each step:

$$b_{t+1} = \tau(b_t, a_t, z_{t+1})$$

•
$$b_{t+1}(s') = \frac{O(s', a_t, z_{t+1}) \sum_{s \in S} T(s, a_t, s') b_t(s)}{P(z_{t+1}|b_t, a_t)}$$

•
$$P(z_{t+1}|b_t, a_t) = \sum_{s' \in S} O(s', a_t, z_{t+1}) \sum_{s \in S} T(s, a_t, s') b_t(s)$$

Policy & Value Function

A policy maps belief states to actions.

We seek the optimal policy π^* :

•
$$\pi^* = \underset{\pi \in \Pi}{\operatorname{arg\,max}} E(\sum_{t=0}^{\infty} \gamma^t r_t | b_0, \pi)$$

 V^* defines the expected rewards obtained by π^* from belief b:

•
$$V^*(b) = \max_{a \in A} [R(b, a) + \gamma \sum_{z \in Z} P(z|b, a)V^*(\tau(b, a, z))]$$

•
$$R(b, a) = \sum_{s \in S} b(s)R(s, a)$$

Offline vs. Online Solvers

Offline : Computes π for all beliefs before the execution.

- Few computations during execution.
- X Takes a lot of computation before execution.

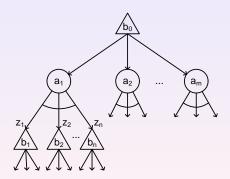
Online: Computes best action in current belief during the execution.

- ✓ Immediatly executable.
- More computations required during execution.
- Planning time limited by real-time constraints.

Plan

- 1 POMDP
- Online Search Algorithms
- AEMS : Anytime Error Minimization Search
 - Motivation
 - Error Contribution
 - Heuristic Search
- 4 Experiments
- 5 Future Work

Online search algorithms proceed by constructing an AND/OR tree of the reachable belief states, from the curent belief b_0 :

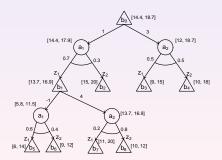


Approximate value functions are used at the fringe nodes :

- Lower Bounds :
 - Blind policy
 - PBVI style algorithms
- Upper Bounds :
 - MDP
 - QMDP
 - FIB
 - Grid based algorithms

Values of parent nodes are obtained from their children values :

- Lower Bounds :
 - $L_T(b) = \max_{a \in A} L_T(b, a)$
 - $L_T(b, a) = R(b, a) + \gamma \sum_{z \in Z} P(z|b, a) L_T(\tau(b, a, z))$
- Upper Bounds :
 - $U_T(b) = \max_{a \in A} U_T(b, a)$
 - $U_T(b, a) = R(b, a) + \gamma \sum_{z \in Z} P(z|b, a) U_T(\tau(b, a, z))$



Once the search has terminated for b_0 :

- Execute the action $\hat{a} = \underset{a \in A}{\operatorname{arg max}} L_T(b_0, a)$
- Get a new observation z.
- Update the root of tree T.
- Resume the search in this new tree.

OMDP Online AEMS Experiments Future Work Motivation Error Heuristic

Plan

- 1 POMDP
- Online Search Algorithms
- 3 AEMS: Anytime Error Minimization Search
 - Motivation
 - Error Contribution
 - Heuristic Search
- 4 Experiments
- 5 Future Work

Motivation

Online search is useful to improve the offline policy.

How should we search to improve it the most?

Can we do better than just a k-step lookahead?

- Might explore paths with small probabilities.
- Might explore paths with small error.
- Variable depth search allows to get more precision where needed.

Improve policy = Reduce its error.

What is the error of a policy?

- The error in b_0 : $e_T(b_0) = V^*(b_0) L_T(b_0)$
- This error comes from the fringe nodes.

How to reduce the error as quickly as possible?

Expand the fringe node that contributes the most to the error in *b*₀

Error contribution

Error contribution of fringe node $b: \gamma^{d(b,b_0)}P(h_{b_0}^b|b_0,\pi^*)e(b)$.

Problem : We cannot compute $P(h_{b_0}^b|b_0,\pi^*)$ and e(b).

We can approximate them:

$$ightharpoonup \hat{e}(b) = U(b) - L(b) \geq e(b)$$

$$\hat{\pi}_T(b, a) = \begin{cases} 1 & \text{if } a = \arg \max_{a' \in A} U_T(b, a') \\ 0 & \text{otherwise} \end{cases}$$

Heuristic : $\widetilde{b}(T) = \arg\max_{\gamma} \gamma^{d(b,b_0)} P(h_{b_0}^b | b_0, \hat{\pi}_T) \hat{e}(b)$ $b \in fringe(T)$

Is this a good heuristic?

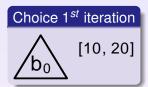
- Favors nodes reached sooner.
- Favors nodes reached by promising actions with high probabilities.
- Favors nodes with large error on their values.

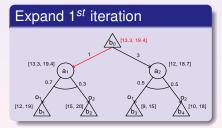
AEMS : Best-first-search using $\tilde{b}(T)$ as heuristic.

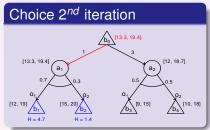
Guaranteed to find an ϵ -optimal action within finite time if $\hat{\pi}_T(b, a)$ is non-zero for $a = \arg \max_{a' \in A} U_T(b, a')$.

POMDP Online AEMS Experiments Future Work Motivation Error Heuristic

Exemple

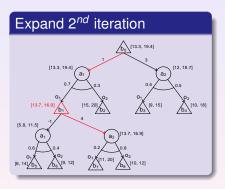


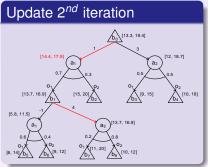




POMDP Online AEMS Experiments Future Work Motivation Error Heuristic

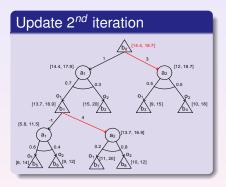
Example

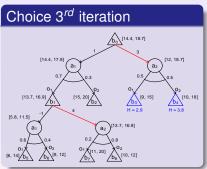




OMDP Online AEMS Experiments Future Work Motivation Error Heuristic

Example





Plan

- 1 POMDP
- Online Search Algorithms
- AEMS : Anytime Error Minimization Search
 - Motivation
 - Error Contribution
 - Heuristic Search
- 4 Experiments
- 5 Future Work

RockSample[7,8]

A robot that must sample good rocks. The state of each rock (good or bad) can be observed through a noisy sensor.

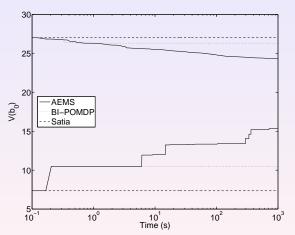
$$|S| = 12545, |A| = 13, |Z| = 2$$

		Offline	Online
Method	Reward	Time (s)	Time (s)
Blind	7.4	4	-
Satia ^{QMDP}	7.4	29	0.889
PBVI	7.7	2418	-
Perseus	8.3	36000	-
RTDP-BEL	8.7	8362	-
RTBSS(2) ^{QMDP} _{Blind}	10.3	29	0.896
HSVI	15.1	10266	-
QMDP	15.5	25	-
BI-POMDP Blind RTBSS(2) QMDP	18.4	29	0.955
RTBSS(2) ^{QMDP}	20.3	25	0.320
HSVI2	20.6	1003	-
AEMS ^{QMDP} Blind	20.8	29	0.884

Α				•	EXIT
		•			Ċ

Convengence

Convergence of the lower and upper bounds with different online search algorithms in RockSample[7,8]:



Plan

- 1 POMDP
- 2 Online Search Algorithms
- 3 AEMS: Anytime Error Minimization Search
 - Motivation
 - Error Contribution
 - Heuristic Search
- 4 Experiments
- 5 Future Work

Future Work

- Explore different variants of $\hat{\pi}_T$
 - We could try several exploration policies already used in RL, e.g. Boltzmann, ϵ -greedy, etc.
 - Learn $\hat{\pi}_T$ from previous search?
- Update the bounds computed offline after every search?

POMDP Online AEMS Experiments Future Work

Questions

