
Online Policy Improvement in Large POMDPs via an Error

Minimization Search

Stéphane Ross stephane.ross@mail.mcgill.ca

Joelle Pineau jpineau@cs.mcgill.ca

School of Computer Science
McGill University, Montreal, Canada, H3A 2A7

Brahim Chaib-draa chaib@damas.ift.ulaval.ca

Department of Computer Science and Software Engineering
Laval University, Quebec, Canada, G1K 7P4

Abstract

Partially Observable Markov Decision Pro-
cesses (POMDPs) provide a rich mathemat-
ical framework for planning under uncer-
tainty. However, most real world systems
are modelled by huge POMDPs that can-
not be solved due to their high complex-
ity. To palliate to this difficulty, we pro-
pose combining existing offline approaches
with an online search process, called AEMS,
that can improve locally an approximate pol-
icy computed offline, by reducing its error
and providing better performance guaran-
tees. We propose different heuristics to guide
this search process, and provide theoretical
guarantees on the convergence to ǫ-optimal
solutions. Our experimental results show
that our approach can provide better solution
quality within a smaller overall time than
state-of-the-art algorithms and allow for in-
teresting online/offline computation tradeoff.

1. Introduction

Partially Observable Markov Decision Processes
(POMDPs) provide a powerful model for sequential
decision making under uncertainty. A POMDP allows
one to model uncertainty related to both the agent’s
actions and observations about the state of the world.
However, most real world applications have huge state
space and observation space, such that exact solving
approaches are completely intractable (finite-horizon

Presented at North East Student Colloquium on Artificial
Intelligence (NESCAI), 2007. Copyright the authors.

POMDPs are PSPACE-complete (Papadimitriou &
Tsitsiklis, 1987) and infinite-horizon POMDPs are un-
decidable (Madani et al., 1999)).

Most of the recent research in the area has focused
on developing approximate offline algorithms that can
find approximate policies for larger POMDPs (Brazi-
unas & Boutilier, 2004; Pineau et al., 2003; Poupart,
2005; Smith & Simmons, 2005; Spaan & Vlassis, 2005).
Still, successful application of POMDPs to real world
problems has been limited due to the fact that even
these approximate algorithms are intractable in the
huge state space of real world systems. One of the
main drawback of these offline approaches is that they
need to compute a policy over the whole belief state
space. In fact, a lot of these computations are gen-
erally not necessary since the agent will only visit a
small subset of belief states when acting in the environ-
ment. This is the strategy online POMDP algorithms
tries to exploit (Satia & Lave, 1973; Washington, 1997;
Geffner & Bonet, 1998; McAllester & Singh, 1999; Pa-
quet et al., 2006; Ross & Chaib-draa, 2007). Online
algorithms proceed by planning only for the current
belief state of the agent during the execution. Conse-
quently, one needs only to compute the best action to
do in this belief state, considering the subset of belief
states that can be reached over some finite planning
horizon.

In this paper, we propose a new anytime online search
algorithm which aims to reduce, as efficiently as pos-
sible, the error made by approximate offline value it-
eration algorithms. Our algorithm can be combined
with any approximate offline value iteration algorithm
to refine and improve locally the approximate poli-
cies computed by such algorithm. We propose vari-
ous heuristics, based on an error analysis of lookahead

search, that aim to guide the search toward reachable
belief states that can most reduce the error. We also
provide theoretical guarantees that these heuristics are
admissible, in the sense that they lead to ǫ-optimal
solutions within finite time. Finally, we compare em-
pirically our approach with different online and offline
approaches in different domains and show that our ap-
proach provides good solution quality within a smaller
overall time.

2. Background: POMDP

A POMDP is generally defined by a tuple
(S,A,Z, T,R,O, b0, γ) where S is a set of states,
representing the possible states of the environment,
A is the action set, representing the possible actions
the agent can take in the environment, Z is the
observation set, representing the possible obser-
vations the agent can make in the environment,
T : S ×A×S → [0, 1] is the transition function where
T (s, a, s′) specifies the probability of moving to a
certain state s′, given that we were in state s and did
action a, R : S × A → ℜ is the reward function where
R(s, a) specifies the immediate reward obtained by
doing action a in state s, O : S × A × Z → [0, 1] is
the observation function where O(s′, a, z) specifies the
probability of observing a certain observation z, given
that we did action a and moved to state s′, b0 is the
initial belief state of the agent, which represents its
belief about the initial state of the environment, and
γ is the discount factor.

In a POMDP, the agent does not know exactly in
which state it currently is, since its observations on the
current state are uncertain. Instead the agent main-
tains a belief state b which is a probability distribution
over all states that specifies the probability that the
agent is in each state, given the complete sequence of
action and observation it has made so far. After the
agent performs an action a and perceives an observa-
tion z, the agent can update its current belief state b
using the belief update function τ : ∆S×A×Z → ∆S
specified by the following equation.

ba,z(s′) = ηO(s′, a, z)
∑

s∈S

T (s, a, s′)b(s) (1)

Here, ba,z is the new belief state returned by τ(b, a, z)
and η is a normalization constant such that the new
probability distribution over all states sums to 1.

Solving a POMDP consists in finding an optimal policy
π∗ which specifies the best action to do in every belief
state b. This optimal policy depends on the planning
horizon and on the discount factor used. In order to

find this optimal policy, we need to compute the opti-
mal value of a belief state over the planning horizon.
For the infinite horizon, the optimal value function is
the fixed point of the following equation.

V ∗(b) = max
a∈A

[
R(b, a) + γ

∑

z∈Z

P (z|b, a)V ∗(τ(b, a, z))

]

(2)

In this equation, R(b, a) =
∑

s∈S R(s, a)b(s) is the ex-
pected immediate reward of doing action a in belief
state b and P (z|b, a) is the probability of observing z
after doing action a in belief state b. This probability
can be computed according to.

P (z|b, a) =
∑

s′∈S

O(s′, a, z)
∑

s∈S

T (s, a, s′)b(s) (3)

We also denote the value Q∗(b, a) of a particular action
a in belief state b, as the long term reward we will
obtain if we perform a in b and then follow the optimal
policy:

Q∗(b, a) = R(b, a) + γ
∑

z∈Z

P (z|b, a)V ∗(τ(b, a, z)) (4)

Using this definition, we can define the optimal policy
π∗ as follows.

π∗(b) = arg max
a∈A

Q∗(b, a) (5)

However, since there is an infinite number of belief
states, it would be impossible to compute such a pol-
icy for all belief states. But, since it has been shown
that the optimal value function of a finite-horizon
POMDP is piecewise linear and convex, we can de-
fine the optimal value function and policy of a finite-
horizon POMDP using a finite set of |S|-dimensional
hyper plan, called α-vector, over the belief state space.
This is how exact offline value iteration algorithms are
able to compute V ∗ in a finite amount of time. How-
ever, exact value iteration algorithms can only be ap-
plied to small problems of 10 to 20 states due to their
high complexity. For more detail, refer to Littman and
Cassandra (Littman, 1996; Cassandra et al., 1997).

Contrary to exact value iteration algorithms, approxi-
mate value iteration algorithms try to keep only a sub-
set of α-vectors after each iteration of the algorithm in
order to limit the complexity of the algorithm. This

is generally achieved by optimizing the value function
only for a small finite subset of chosen belief points
(Pineau et al., 2003; Spaan & Vlassis, 2005; Smith &
Simmons, 2005), thus limiting the number of α-vectors
to the number of belief points. The precision of these
algorithms depend on the number of belief points and
their location in the belief state space.

3. Online Search in POMDPs

Contrary to offline approaches, which compute a com-
plete policy determining an action for every belief
state, an online algorithm takes as input the current
belief state and returns the single action that seems
to be the best for this particular belief state. The
advantage of such an approach is that it only needs
to consider the most important reachable belief states
from the current belief state to plan the next action.
However, it may take a lot of time choosing an action
to ensure some optimality guaranties.

Lookahead search algorithms in POMDP generally
proceed by exploring the tree of reachable belief states
from the current belief state, by considering the dif-
ferent sequence of actions and observations. In this
tree, belief states are represented as OR-nodes (we
must choose an action) and actions are represented
as AND-nodes (we must consider all possible observa-
tions). This tree structure is used to determine the
value of the current belief state and the best action to
do in this belief state. The values of the actions and be-
lief states in the tree are evaluated by propagating the
fringe belief state values to their ancestors, according
to equation 2. An approximate value function is gen-
erally used at the fringe of the tree to approximate the
infinite-horizon value of these fringe belief states. In
our case, we will be interested in using a lower bound
and an upper bound on the value of these fringe belief
states, as it will allow us to conduct branch & bound
pruning in the tree. In this case, the lower and upper
bounds are propagated to parent nodes according to
the following equations:

UT (b) =

{
U(b) if b is a leaf in T
maxa∈A UT (b, a) otherwise

(6)

UT (b, a) = R(b, a) + γ
∑

z∈Z

P (z|b, a)UT (τ(b, a, z)) (7)

LT (b) =

{
L(b) if b is a leaf in T
maxa∈A LT (b, a) otherwise

(8)

b0
[14.4, 18.7]

a1

b2b1

z1 z2

a2

b4b3

z1 z2

1 3

0.7 0.3 0.5 0.5

a1

b6b5

z1 z2

a2

b8b7

z1 z2

-1
4

0.6 0.4 0.2 0.8

[14.4, 17.9] [12, 18.7]

[10, 18][9, 15][15, 20]

[6, 14] [9, 12]
[11, 20]

[10, 12]

[13.7, 16.9]

[5.8, 11.5]

[13.7, 16.9]

Figure 1. Example of an AND-OR tree constructed by a
lookahead search algorithm.

LT (b, a) = R(b, a) + γ
∑

z∈Z

P (z|b, a)LT (τ(b, a, z)) (9)

Here, UT (b) and LT (b) represent the upper and lower
bound on V ∗(b) associated to belief state b in the tree
T and UT (b, a) and LT (b, a) represent the upper and
lower bound on Q∗(b, a) for the corresponding action
node in the tree T . We use L(b) and U(b) to represent
the lower bound and upper bound computed offline.

An example AND-OR tree constructed by such search
process is presented in figure 1.

In this figure, the belief states OR-nodes are repre-
sented by triangular nodes and the action AND-nodes
by circular nodes. The rewards R(b, a) are represented
by values on the outgoing arcs from OR-nodes and
probabilities P (z|b, a) by probabilities on the outgo-
ing arcs from AND-nodes. The values inside brackets
represent the lower and upper bounds that have been
computed according to equations 6, 7, 8, 9 and, using
a discount factor γ = 0.95.

One motivation for doing an online search is that it
can reduce the error made by the approximate value
function used at the fringe. It has been shown by
Puterman (Puterman, 1994) that a complete k-step
lookahead multiplies the error bound on the approx-
imate value function used at the fringe by γk, and
therefore reduces the error bound for γ ∈ [0, 1) (this is
also a consequence of theorem 1 presented in the next
section). However, since a k-step lookahead search has
a complexity exponential in k, it motivates the need
for more efficient online algorithms that can guarantee
similar or better error bounds.

One intuitive reason why a k-step lookahead may be
inefficient is that it may explore belief states that have

very small probabilities to occur and that therefore,
does not influence a lot the value function (see equa-
tion 2). Furthermore, a k-step lookahead may also
explore nodes that have very small error, which will
not bring much more precision to our approximation.
Finally, a k-step lookahead will also explore nodes that
are reached by suboptimal actions that do not influ-
ence V ∗ (suboptimal actions can be detected using
lower and upper bounds, i.e. a is guaranteed to be sub-
optimal when UT (b, a) ≤ LT (b)). Hence, in all these
cases, it would be more efficient to guide the search
toward nodes that contributes more to the value func-
tion in order to reduce their error.

These observations lead us to the fact that, if we want
a more efficient online search algorithm, then it should
optimize the error reduction on the current belief state,
i.e. it should try to minimize the error on the current
belief state as quickly as possible, such as to guarantee
performance as close as possible to the optimal policy.
In the next section, we will present an error analysis of
lookahead search that will allow us to derive heuristics
to achieve this goal.

4. Anytime Error Minimization Search

As we have mentioned before, our new approach,
called AEMS, for Anytime Error Minimization Search,
adopts an error minimization point of view by trying
to reduce as quickly as possible the error on the cur-
rent belief state, in order to guarantee performance as
close as possible to the optimal within the allowed on-
line planning time. In order to achieve this objective,
we adopt a heuristic search approach where the search
is guided toward the fringe node that contributes the
most to the error on the current belief state. To this
end, we need a way to express the error on the current
belief states in terms of the error on the fringe belief
state. Theorem 1 states that more formally.

We will denote F(T) the set of fringe nodes
of a tree T , hb

b0
the unique sequence of action

and observation that leads from b0 to node b
in tree T , d(b, b0) the depth of belief node b in
T from the current belief state b0, P (hb

b0
|b0, π

∗) =
∏d(b,b0)−1

i=0 P (zi(h
b
b0

)|bi(h
b
b0

), ai(h
b
b0

))π∗(bi(h
b
b0

), ai(h
b
b0

))
the probability of reaching belief b via the sequence
hb

b0
if we follow the optimal policy π∗ from the current

belief b0, where zi(h
b
b0

), bi(h
b
b0

) and ai(h
b
b0

) refer to
the observation, belief state and action encountered
at depth i in the sequence hb

b0
and π∗(b, a) is the

probability that the optimal policy executes action a
in belief state b. Notice here that in the context of
online algorithms, we will refer to b0 as the current

belief state during the execution, which may differ
from the initial belief state of the environment. Hence
b0 will always refer to the root of the search tree.

Theorem 1. In any tree T where values are computed

according to equations 8 and 9 using a lower bound

value function L with error e(b) = V ∗(b) − L(b), the

error on the root belief state b0 is bounded by: eT (b0) =
V ∗(b0) − LT (b0) ≤

∑
b∈F(T) γd(b,b0)P (hb

b0
|b0, π

∗)e(b).

Proof. Proof provided in the appendix.

Here, eT is the error function for nodes in the tree T :
eT (b) = V ∗(b)−LT (b) (eT (b) = e(b) for fringe nodes).

4.1. Heuristics

From theorem 1, we see that the contribution of each
fringe node to the error in b0 is simply the term
γd(b,b0)P (hb

b0
|b0, π

∗)e(b). Consequently, if we want to
minimize eT (b0) as quickly as possible, we should ex-
plore leaves reached by the optimal policy π∗ that
maximize the term γd(b,b0)P (hb

b0
|b0, π

∗)e(b) as they of-
fer the greatest potential to reduce eT (b0). Therefore,
this gives us a sound heuristic to explore the tree in a
best-first-search way.

However, we do not know V ∗ nor π∗, which are re-
quired to compute the terms e(b) and P (hb

b0
|b0, π

∗);
nevertheless, we can approximate them.

First, the term e(b) can be estimated by the difference
between the lower and upper bound. That is, we will
define ê(b) as an estimation of the error introduced by
our bounds at fringe nodes:

ê(b) = U(b) − L(b) (10)

Clearly, ê(b) is an upper bound on e(b) since U(b) ≥
V ∗(b).

To approximate the term P (hb
b0
|b0, π

∗), we can view
the terms π∗(b, a) as the probability that action a is
optimal in belief b. In this context, we will approxi-
mate π∗(b, a) by using an approximate policy π̂T , such
that π̂T (b, a) will represent the probability that action
a is optimal in belief state b, given the lower and upper
bounds LT (b, a) and UT (b, a) that we have on Q∗(b, a)
in tree T . In particular, if for all actions a′ 6= a,
UT (b, a′) ≤ LT (b, a), then we would know for sure that
action a is optimal in belief b, i.e. π̂T (b, a) should be
1. However in general there will be many actions that
could be optimal, such that, in order to compute the
probability π̂T (b, a), we will need to consider the Q-
value Q∗(b, a) as a random variable and make some

assumptions about its underlying probability distribu-
tion. Once density functions f b

a and cumulative distri-
bution functions F b

a are determined for each (b, a), we
can compute the probability π̂T (b, a) that action a is
optimal in belief b, given the tree T , as follows:

π̂T (b, a) =

∫ ∞

−∞

f b
a(x)

∏

a′ 6=a

F b
a′(x)dx (11)

This comes from the fact that P (∀a′ 6= a,Q∗(b, a) >
Q∗(b, a′)) =

∑
x P (Q∗(b, a) = x)

∏
a′ 6=a P (Q∗(b, a′) <

x) if Q∗(b, a) would be discrete. The last integral is
just a generalization of this term for continuous ran-
dom variables. However, computing this integral may
not be computationally efficient depending on how we
define the functions f b

a. One possible approximation is
to simply compute the probability that the Q-value of
a certain action is higher than its parent belief state
value instead of all actions’ Q-value. In this case,
the integral reduces to π̂T (b, a) =

∫ ∞

−∞
f b

a(x)F b(x)dx,

where F b is the cumulative distribution function for
the value V ∗(b). Henceforth, by considering both
Q∗(b, a) and V ∗(b) as random variables that follow
uniform distributions between their respective lower
and upper bounds, we get that:

π̂T (b, a) =

{
η (UT (b,a)−LT (b))2

UT (b,a)−LT (b,a) if UT (b, a) > LT (b)

0 otherwise

(12)

η is a normalization constant such that the probabil-
ities π̂T (b, a) over all actions a ∈ A will sum to 1.
Notice also that if the density function is 0 outside
the interval between the lower and upper bound, then
π̂T (b, a) = 0 for dominated actions and we will never
explore fringe nodes that are reached by taking these
dominated actions. Consequently, the term π̂T (b, a)
implicitly prunes the dominated actions.

Another practical approximation that we can use is to
simply consider the action that maximizes the upper
bound as the optimal action:

π̂T (b, a) =

{
1 if a = arg maxa′∈A UT (b, a′)
0 otherwise

(13)

Consequently, this will restrict the exploration to
fringe nodes that are reached by sequence of actions
that maximize the upper bound of their parent belief
state, as done in the AO∗ algorithm (Nilsson, 1980).
The nice property of this approximation is that these

fringe nodes are the only nodes that can potentially
reduce the upper bound in b0.

Using these two approximations, we can evaluate an
approximate error contribution E(b, b0, T) of a fringe
node b on the value of the root belief b0 in tree T as:

E(b, b0, T) = γd(b,b0)P (hb
b0
|b0, π̂T)ê(b) (14)

Using this approximate error contribution as an heuris-
tic for a best-first-search algorithm, the next fringe
node b̃(T) to expand in tree T is defined as follows:

b̃(T) = arg max
b∈F(T)

γd(b,b0)P (hb
b0
|b0, π̂T)ê(b) (15)

Since we proposed 2 different approximations for π̂T ,
we will refer to this heuristic as AEMS1 when using
π̂T as defined in equation 12 and AEMS2 when using
equation 13.

Intuitively, b̃(T) seems a sound heuristic to guide the
search since it has several desired properties, i.e. it
will favor the exploration of belief states that have
high probabilities to be reached by promising actions
and that have a lot of error.

4.2. Algorithm

A detailed description of our algorithm is presented in
algorithm 1.

Algorithm 1 AEMS : Anytime Error Minimization
Search

Function AEMS(t, ǫ)
Static : T: an AND-OR tree representing the current
search tree.
Initialize T with initial belief state b0

while not EnvironmentTerminated() do

t0 ← Time()
while Time()− t0 ≤ t and not Solved(Root(T), ǫ)
do

b∗ ← eb(T)
Expand(b∗)
UpdateAncestors(b∗)

end while

â← arg maxa∈A LT (Root(T), a)
DoAction(â)
z ← GetObservation()
T ← SubTree(Child(Root(T), â, z))

end while

Here the parameter t represents the online search time
allowed per action and ǫ is the desired precision on the
policy. The Expand function simply does a one-step
lookahead under the node b∗ by adding the next ac-
tion and belief nodes to the tree T and computing their
lower and upper bounds according to equations 6, 7,

8 and 9. Notice that if we reach a belief state that
is already somewhere else in the tree, it will be du-
plicated, since our current algorithm does not handle
graph structure. We could possibly try to use a tech-
nique proposed for AO* (LAO* algorithm (Hansen &
Zilberstein, 2001)) to handle cycle, but we have not in-
vestigated this further and how it affects the heuristic
value. After a node is expanded, the UpdateAnces-

tors function simply recomputes the bounds of its
ancestors according to equations 6, 7, 8 and 9. It also
recomputes the the probabilities π̂T (b, a) and the best
actions of each ancestor nodes. The search will ter-
minate whenever there is no more time available or
we have found an ǫ-optimal solution (verified by the
Solved function). Then the algorithm executes the
action that maximizes the lower bound and updates
the tree T such that our new belief state will be the
root of T ; all the nodes under this new root can be
reused at the next time step.

4.3. Theoretical Results

We now provide some sufficient conditions under which
AEMS is guaranteed to converge to an ǫ-optimal pol-
icy after a finite number of expansions. We will show
that the heuristics we have presented satisfy those con-
ditions and therefore, are admissible.

Theorem 2. Given U(b) ≥ V ∗(b), L(b) ≤ V ∗(b)
and ê(b) = U(b) − L(b) for all belief b and U
is bounded above and L is bounded below, if γ ∈
[0, 1) and infb,T |êT (b)>ǫ π̂T (b, âT

b) > 0 for âT
b =

arg maxa∈A UT (b, a), then the AEMS algorithm using

heuristic b̃(T) is complete and ǫ-optimal.

Proof. Proof provided in the appendix.

From this last theorem, we can see that the main
sufficient property for convergence if we use ê(b) =
U(b)−L(b) is to just guarantee that π̂T (b, a) must be
greater than 0 for the action a that maximizes UT (b, a).
Hence we can potentially develop many different ad-
missible heuristics for the AEMS algorithm. It also
follows from this theorem that the 2 heuristics we have
proposed, AEMS1 and AEMS2, are admissible. This
is demonstrated formally in the following corollaries:

Corollary 1. Given U(b) ≥ V ∗(b) and L(b) ≤ V ∗(b)
for all belief b and U is bounded above and L is bounded

below, if γ ∈ [0, 1), the AEMS algorithm using heuris-

tic b̃(T), with approximations π̂T as defined in equation

12 and ê(b) = U(b) − L(b), is complete and ǫ-optimal.

Proof. Proof provided in the appendix.

Corollary 2. Given U(b) ≥ V ∗(b) and L(b) ≤ V ∗(b)
for all belief b and U is bounded above and L is bounded

below, if γ ∈ [0, 1), the AEMS algorithm using heuris-

tic b̃(T), with approximations π̂T as defined in equation

13 and ê(b) = U(b) − L(b), is complete and ǫ-optimal.

Proof. Proof provided in the appendix.

5. Experiments

We have tested our algorithm in the Tag (Pineau et al.,
2003), RockSample (Smith & Simmons, 2005) and the
FieldVisionRockSample (FVRS) environments (Ross
& Chaib-draa, 2007). In each of these environments,
we used factored POMDP representation (Poupart,
2005) to lower the complexity of computing τ(b, a, z)
and P (z|b, a); and we first computed the Blind pol-
icy1 to obtain a lower bound and used the FIB algo-
rithm (Hauskrecht, 2000) to obtain an upper bound.
We then compared the performance yielded by differ-
ent online approaches (Satia (Satia & Lave, 1973), BI-
POMDP (Washington, 1997), RTBSS (Paquet et al.,
2006), AEMS1, AEMS2) using these lower and up-
per bounds, under a real-time constraint of 1 sec-
ond/action, according to different metrics: average
reward, average error reduction2 (ER) and average
lower bound improvement3 (LBI). Satia, BI-POMDP,
AEMS1 and AEMS2 were all implemented in the same
algorithm since they differ only by the heuristic used to
guide the search, which allowed us to measure directly
the performance of the specific heuristics. RTBSS
serves as a base line for a complete k-step lookahead
search using branch & bound pruning.

In table 1, we present 95% confidence intervals on the
different statistics. The Belief Nodes column repre-
sents the average number of belief nodes explored at
each time step and the Reuse column contains the av-
erage percentage of belief nodes that were reused in the
next timestep. The time column contains the average
online time per action taken by the algorithm (results
are slightly lower than 1 second because sometimes the
algorithms found ǫ-optimal action). For RTBSS, the
depth used is presented in parenthesis and corresponds
to the highest depth that had an average running time
under 1 second. We also present the performance ob-
tained by the Blind Policy, which is the policy we are
trying to improve with the online algorithm.

1The best policy performing the same action in every
belief state

2The error reduction is defined as 1 − UT (b0)−LT (b0)
U(b0)−L(b0)

,

when the search process terminates on b0
3The lower bound improvement is defined as LT (b0) −

L(b0), when the search process terminates on b0

Table 1. Comparison of different online search algorithm in
different environments.

Heuristic / Belief Reuse Time
Algorithm Reward ER (%) LBI Nodes (%) (ms)

± 0.01 ± 0.1 ± 0.01 - ±0.1 ±1

Tag (|S| = 870, |A| = 5, |Z| = 30)
Blind -19.21 - - - - -

RTBSS(5) -10.30 22.3 3.03 45067 0 580
Satia & Lave -8.35 22.9 2.47 36908 10.0 856

AEMS1 -6.73 49.0 3.92 43693 25.1 814

BI-POMDP -6.22 76.2 7.81 79508 54.6 622
AEMS2 -6.19 76.3 7.81 80250 54.8 623

RockSample[7,8] (|S| = 12545, |A| = 13, |Z| = 2)
Blind 7.35 - - - - -

Satia & Lave 7.35 3.6 0 509 8.9 900
AEMS1 10.30 9.5 0.90 579 5.3 916

RTBSS(2) 10.30 9.7 1.00 439 0 896
BI-POMDP 18.43 33.3 4.33 2152 29.9 953
AEMS2 20.75 52.4 5.30 3145 36.4 859

FVRS[5,7] (|S| = 3201, |A| = 5, |Z| = 128)
Blind 8.15 - - - - -

RTBSS(1) 20.57 7.7 2.07 516 0 254
BI-POMDP 22.75 11.1 2.08 4457 0.4 923
Satia & Lave 22.79 11.1 2.05 3683 0.4 947

AEMS1 23.31 12.4 2.24 3856 1.4 942

AEMS2 23.39 13.3 2.35 4070 1.6 944

As we can see from these results, AEMS2 provide the
best average reward, average error reduction and av-
erage lower bound improvement in all these environ-
ments. The higher error reduction and lower bound
improvement obtained by AEMS2 indicates that it can
guarantee performance closer to the optimal. Further-
more, we also observe that AEMS2 has the best av-
erage reuse percentage, which indicates that AEMS2
is able to guide the search toward the most proba-
ble nodes and allows it to generally maintain a higher
number of belief nodes in the tree. On the other
hand, AEMS1 did not perform very well, except in
FVRS[5,7]. This could be explained by the fact that
our assumption that the values of the actions are
uniformly distributed between the lower and upper
bounds is not valid in these environments. AEMS2
might also be more efficient than AEMS1 due to the
fact that it always explore nodes that will reduce the
upper bound in b0, which is not the case for AEMS1.

Compared to offline algorithms, AEMS2 fares pretty
well. In Tag, the best result in terms of rewards comes
from the Perseus algorithm which has an average re-
ward of -6.17 but requires 1670 seconds of offline time
(Spaan & Vlassis, 2005), while our approach obtained
-6.19 but only required 1 second of offline time to com-
pute the lower and upper bounds. Again in RockSam-
ple[7,8], HSVI, the best offline approach, obtains an
average reward of 20.6 and requires 1003 seconds of
offline time (Smith & Simmons, 2005), while our ap-
proach obtained 20.75 but only required 25 seconds of
offline time to compute the lower and upper bounds.

10
−2

10
−1

10
0

10
1

10
2

10
35

10

15

20

25

30

Time (s)

V
(b

0)

AEMS2
AEMS1
BI−POMDP
Satia

Figure 2. Evolution of the upper and lower bounds on
RockSample[7,8] with the different heuristics.

In previous work, we had also compared AEMS2 to
other online approaches using PBVI as a lower bound
(Ross & Chaib-draa, 2007). Again, AEMS2 showed
better performance, which indicates that AEMS2
tends to be better than the other approaches, no mat-
ter which bound we use.

We also looked at how fast the lower and upper bound
converge if we just let the algorithm run up to 1000
seconds on the initial belief state, to give us an idea
of which heuristic would be the best given more online
planning time is available. The results on RockSam-
ple[7,8] are presented in figure 2.

As we can see, the bounds converge much more quickly
for the AEMS2 heuristic.

6. Conclusion

We have proposed a new online heuristic search al-
gorithm which seeks to minimize the error on ap-
proximate policies computed offline. Our approach
has shown the best overall performance in terms of
rewards, error reduction and lower bound improve-
ment compared to the other existing online algorithm
in large POMDPs. It also offers an interesting of-
fline/online computation tradeoff and obtains similar
performance to the best offline approach at a fraction
of the total computation time. We have also showed
that the heuristics we proposed are admissible and lead
to ǫ-optimal solutions within finite time. For future
work, we would like to investigate further improve-
ment to the algorithm. As we mentioned, our current
algorithm does not handle cycle which makes it do
redundant computations when belief states are dupli-
cated. We would also like to experiment with other
variants of the term π̂T (b, a) and see whether we can
come up with better approximations.

7. Acknowledgements

This research was supported in part by the Natural
Science and Engineering Council of Canada (NSERC).

8. Appendix

In this section we present the proofs of the different
theorems introduced in this paper.

Theorem 1. In any tree T where values are computed

according to equations 8 and 9 using a lower bound

value function L with error e(b) = V ∗(b) − L(b), the

error on the root belief state b0 is bounded by: eT (b0) =
V ∗(b0) − LT (b0) ≤

∑
b∈F(T) γd(b,b0)P (hb

b0
|b0, π

∗)e(b).

Proof. Consider an arbitrary parent node b in tree
T and let’s denote a∗

b = arg maxa∈A Q∗(b, a) and
âT

b = arg maxa∈A LT (b, a). We have eT (b) =
V ∗(b) − LT (b). If âT

b = a∗
b , then eT (b) =

γ
∑

z∈Z P (z|b, a∗
b)eT (τ(b, a∗

b , z)). On the other
hand, when âT

b 6= a∗
b , then we know that

LT (b, a∗
b) ≤ LT (b, âT

b) and therefore eT (b) ≤
γ

∑
z∈Z P (z|b, a∗

b)eT (τ(b, a∗
b , z)). Consequently, the

following recurrence is an upper bound on eT (b):

eT (b) =

{
e(b) if b ∈ F(T)
γ

∑
z∈Z

P (z|b, a∗
b)eT (τ(b, a∗

b , z)) otherwise

Solving this recurrence for b0 proves the theorem.

Lemma 1. In any tree T , the approximate error con-

tribution E(bd, b0, T) of a belief node bd at depth d is

bounded by E(bd, b0, T) ≤ γd supb ê(b).

Proof. Since P (hb
b0
|b0, π̂T) ≤ 1 and ê(b) ≤ supb′ ê(b′)

for all belief b, then it follows that E(bd, b0, T) ≤
γd supb ê(b).

For the following lemma and theorem, we will denote

P (hb
b0
|b0) =

∏d(b,b0)−1
i=0 P (zi(h

b
b0

)|ai(h
b
b0

), bi(h
b
b0

)) the
product of the observation probabilities along the path
hb

b0
from current belief b0 to belief b and β̂(b0, T) ⊆

F(T) as the set of all fringe nodes in T such that
P (hb

b0
|b0, π̂T) > 0, for π̂T defined as in equation 13,

i.e. the set of all fringe nodes reached by a sequence
of actions that maximize the upper bound UT (b, a) in
their respective belief state.

Lemma 2. Given U(b) ≥ V ∗(b), L(b) ≤ V ∗(b), and

ê(b) = U(b) − L(b) for all belief b, U bounded above

and L bounded below, then for any tree T , ǫ > 0 and

D such that γD supb ê(b) ≤ ǫ, if for all b ∈ β̂(b0, T),
either d(b, b0) > D or there exists an ancestor b′ of b
such that êT (b′) ≤ ǫ, then êT (b0) ≤ ǫ.

Proof. Let’s denote âT
b = arg maxa∈A UT (b, a). We

first notice that for any tree T , and parent belief b ∈ T ,
êT (b) = UT (b) − LT (b) ≤ UT (b, âT

b) − LT (b, âT
b) =

γ
∑

z∈Z P (z|b, âT
b)êT (τ(b, âT

b , z)). Consequently, the
following recurrence is an upper bound on êT (b):

êT (b) =





ê(b) if b ∈ F(T)
ǫ if êT (b) ≤ ǫ
γ

∑
z∈Z

P (z|b, âT
b)êT (τ(b, âT

b , z)) otherwise

By unfolding the recurrence for b0, we get
êT (b0) =

∑
b∈A(T) γd(b,b0)P (hb

b0
|b0)ê(b) +

ǫ
∑

b∈B(T) γd(b,b0)P (hb
b0
|b0), where B(T) is the

set of parent nodes b′ having a descendant in β̂(b0, T)
such that êT (b′) ≤ ǫ and A(T) is the set of fringe

nodes b′′ in β̂(b0, T) not having an ancestor in B(T).

Hence if for all b ∈ β̂(b0, T), d(b, b0) > D or there
exists an ancestor b′ of b such that êT (b′) ≤ ǫ, then
this means that for all b in A(T), d(b, b0) > D, and
therefore, êT (b0) ≤ γD supb ê(b)

∑
b∈A(T) P (hb

b0
|b0) +

ǫ
∑

b∈B(T) P (hb
b0
|b0) ≤ ǫ

∑
b∈A(T)∪B(T) P (hb

b0
|b0) =

ǫ.

Theorem 2. Given U(b) ≥ V ∗(b), L(b) ≤ V ∗(b)
and ê(b) = U(b) − L(b) for all belief b and U
is bounded above and L is bounded below, if γ ∈
[0, 1) and infb,T |êT (b)>ǫ π̂T (b, âT

b) > 0 for âT
b =

arg maxa∈A UT (b, a), then the AEMS algorithm using

heuristic b̃(T) is complete and ǫ-optimal.

Proof. Consider an arbitrary ǫ > 0 and current
belief state b0. If γ = 0, then obviously, as soon
as AEMS will have expanded b0, êT (b0) = 0 since
UT (b0) = LT (b0) = maxa∈AR(b0, a) and therefore
AEMS is complete and ǫ-optimal. Therefore let’s
concentrate on the case where γ ∈ (0, 1). Clearly,
since U is bounded above and L is bounded below, ê is
bounded above, and therefore, since γ ∈ (0, 1), there
exists a positive integer D such that γD supb ê(b) < ǫ.
Let’s denote AT

b the set of ancestor belief states of b
in the tree T , and given a finite set A of belief nodes,
let’s define êmin

T (A) = minb∈A êT (b). Now let’s define

Tb = {T |Tfinite, b ∈ β̂(b0, T), êmin
T (AT

b) > ǫ}
and B = {b|ê(b) infT∈Tb

P (hb
b0
|b0, π̂T) >

0, d(b, b0) ≤ D}. Clearly, by the assumption
that infb,T |êT (b)>ǫ π̂T (b, âT

b) > 0, then B contains all
belief states b within depth D such that ê(b) > 0,
P (hb

b0
|b0) > 0 and there exists a finite tree T where

b ∈ β̂(b0, T) and all ancestors b′ of b have êT (b′) > ǫ.
Furthermore, B is finite since there are only finitely
many belief states within depth D. Hence there exists
a Emin = minb∈B γd(b,b0)ê(b) infT∈Tb

P (hb
b0
|b0, π̂T).

Clearly, Emin > 0 and we know that for any tree T ,
all beliefs b in B ∩ β̂(b0, T) have an approximate error
contribution E(b, b0, T) ≥ Emin. Since Emin > 0
and γ ∈ (0, 1), there exists a positive integer D′

such that γD′

supb ê(b) < Emin. Hence by lemma 1,
this means that AEMS cannot expand any node at
depth D′ or beyond before expanding a tree T where
B∩ β̂(b0, T) = ∅. Because there are only finitely many
nodes below depth D′, then it is clear that AEMS will
reach such tree T after a finite number of expansions.
Furthermore, for this tree T , since B ∩ β̂(b0, T) = ∅,

we have that for all beliefs b ∈ β̂(b0, T), either
d(b, b0) ≥ D or êmin

T (AT
b) ≤ ǫ. Hence by lemma 2,

this implies that êT (b0) < ǫ, and consequently AEMS
will terminate (Solved(b0, ǫ) will evaluate to true)
with an ǫ-optimal solution (since eT (b0) ≤ êT (b0))
after a finite number of expansions.

Corollary 1. Given U(b) ≥ V ∗(b) and L(b) ≤ V ∗(b)
for all belief b and U is bounded above and L is bounded

below, if γ ∈ [0, 1), the AEMS algorithm using heuris-

tic b̃(T), with approximations π̂T as defined in equation

12 and ê(b) = U(b) − L(b), is complete and ǫ-optimal.

Proof. We first notice that (UT (b, a) −
LT (b))2/(UT (b, a) − LT (b, a)) ≤ êT (b, a), since
LT (b) ≥ LT (b, a) for all a. Furthermore,
êT (b, a) ≤ supb′ ê(b′). Therefore the normaliza-
tion constant η ≥ (|A| supb ê(b))−1. For âT

b =
arg maxa∈A UT (b, a), we have UT (b, âT

b) = UT (b),
and therefore UT (b, âT

b) − LT (b) = êT (b). Hence
this means that π̂T (b, âT

b) = η(êT (b))2/êT (b, âT
b) ≥

(|A|(supb′ ê(b′))2)−1(êT (b))2 for all T , b. Hence,
for any ǫ > 0, infb,T |êT (b)>ǫ π̂T (b, âT

b) ≥
(|A|(supb ê(b))2)−1ǫ2 > 0. Therefore it immedi-
atly follows from theorem 2 that AEMS is complete
and ǫ-optimal.

Corollary 2. Given U(b) ≥ V ∗(b) and L(b) ≤ V ∗(b)
for all belief b and U is bounded above and L is bounded

below, if γ ∈ [0, 1), the AEMS algorithm using heuris-

tic b̃(T), with approximations π̂T as defined in equation

13 and ê(b) = U(b) − L(b), is complete and ǫ-optimal.

Proof. By definition of π̂T , π̂T (b, âT
b) = 1 for all b,T .

Hence, infb,T |êT (b)>ǫ π̂T (b, âT
b) = 1 and therefore it im-

mediatly follows from theorem 2 that AEMS is com-
plete and ǫ-optimal.

References

Braziunas, D., & Boutilier, C. (2004). Stochastic local
search for POMDP controllers. AAAI-04.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997).
Incremental pruning: a simple, fast, exact method for

partially observable Markov decision processes. UAI-97
(pp. 54–61).

Geffner, H., & Bonet, B. (1998). Solving large POMDPs
using real time dynamic programming. Fall AAAI symp.
on POMDPs.

Hansen, E. A., & Zilberstein, S. (2001). LAO * : A heuris-
tic search algorithm that finds solutions with loops. Ar-
tificial Intelligence, 129, 35–62.

Hauskrecht, M. (2000). Value-function approximations for
partially observable Markov decision processes. Journal
of Artificial Intelligence Research, 13, 33–94.

Littman, M. L. (1996). Algorithms for sequential decision
making. Doctoral dissertation, Brown University.

Madani, O., Hanks, S., & Condon, A. (1999). On the unde-
cidability of probabilistic planning and infinite-horizon
partially observable markov decision problems. AAAI-
99 (pp. 541–548).

McAllester, D., & Singh, S. (1999). Approximate Planning
for Factored POMDPs using Belief State Simplification.
UAI-99 (pp. 409–416).

Nilsson, N. (1980). Principles of Artificial Intelligence.
Tioga Publishing.

Papadimitriou, C., & Tsitsiklis, J. N. (1987). The com-
plexity of Markov decision processes. Mathematics of
Operations Research, 12, 441–450.

Paquet, S., Chaib-draa, B., & Ross, S. (2006). Hybrid
POMDP algorithms. Proceedings of The Workshop on
Multi-Agent Sequential Decision Making in Uncertain
Domains (MSDM-2006). Hakodate, Hokkaido, Japan.

Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based
value iteration: an anytime algorithm for POMDPs.
IJCAI-03.

Poupart, P. (2005). Exploiting structure to efficiently
solve large scale partially observable Markov decision
processes. Doctoral dissertation, University of Toronto.

Puterman, M. L. (1994). Markov decision processes: Dis-
crete stochastic dynamic programming. New York, NY,
USA: John Wiley & Sons, Inc.

Ross, S., & Chaib-draa, B. (2007). AEMS: an anytime on-
line search algorithm for approximate policy refinement
in large pomdps. IJCAI’07 (pp. 2592–2598). Hyderabad,
India.

Satia, J. K., & Lave, R. E. (1973). Markovian decision
processes with probabilistic observation of states. Man-
agement Science, 20, 1–13.

Smith, T., & Simmons, R. (2005). Point-based POMDP al-
gorithms: improved analysis and implementation. UAI-
05. Edinburgh, Scotland.

Spaan, M. T. J., & Vlassis, N. (2005). Perseus: randomized
point-based value iteration for POMDPs. JAIR, 24, 195–
220.

Washington, R. (1997). BI-POMDP: bounded, incremental
partially observable Markov model planning. 4th Eur.
Conf. on Planning (pp. 440–451).

