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Abstract

Bayesian learning methods have recently been shown to provide an elegant solution to the exploration-
exploitation trade-off in reinforcement learning. However most investigations of Bayesian rein-
forcement learning to date focus on the standard Markov Decision Processes (MDPs). The primary
focus of this paper is to extend these ideas to the case of partially observable domains, by introduc-
ing the Bayes-Adaptive Partially Observable Markov Decision Processes. This new framework can
be used to simultaneously (1) learn a model of the POMDP domain through interaction with the en-
vironment, (2) track the state of the system under partial observability, and (3) plan (near-)optimal
sequences of actions. An important contribution of this paper is to provide theoretical results show-
ing how the model can be finitely approximated while preserving good learning performance. We
present approximate algorithms for belief tracking and planning in this model, as well as empirical
results that illustrate how the model estimate and agent’s return improve as a function of experience.

Keywords: reinforcement learning, Bayesian inference, partially observable Markov decision
processes

1. Introduction

Robust decision-making is a core component of many autonomous agents. This generally requires
that an agent evaluate a set of possible actions, and choose the best one for its current situation. In
many problems, actions have long-term consequences that must be considered by the agent; it is not
useful to simply choose the action that looks the best in the immediate situation. Instead, the agent
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must choose its actions by carefully trading off their short-term and long-term costs and benefits.
To do so, the agent must be able to predict the consequences of its actions, in so far as it is useful to
determine future actions. In applications where it is not possible to predict exactly the outcomes of
an action, the agent must also consider the uncertainty over possible future events.

Probabilistic models of sequential decision-making take into account such uncertainty by spec-
ifying the chance (probability) that any future outcome will occur, given any current configuration
(state) of the system, and action taken by the agent. However, if the model used does not perfectly
fit the real problem, the agent risks making poor decisions. This is currently an important limitation
in practical deployment of autonomous decision-making agents, since available models are often
crude and incomplete approximations of reality. Clearly, learning methods can play an important
role in improving the model as experience is acquired, such that the agent’sfuture decisions are also
improved.

In the past few decades, Reinforcement Learning (RL) has emerged as an elegant and popular
technique to handle sequential decision problems when the model is unknown(Sutton and Barto,
1998). Reinforcement learning is a general technique that allows an agent to learn the best way to
behave, that is, such as to maximize expected return, from repeated interactions in the environment.
A fundamental problem in RL is that of exploration-exploitation: namely, how should the agent
chooses actions during the learning phase, in order to both maximize its knowledge of the model as
needed to better achieve the objective later (i.e.,explore), and maximize current achievement of the
objective based on what is already known about the domain (i.e.,exploit). Under some (reasonably
general) conditions on the exploratory behavior, it has been shown thatRL eventually learns the
optimal action-select behavior. However, these conditions do not specify how to choose actions
such as to maximize utilities throughout the life of the agent, including during the learning phase,
as well as beyond.

Model-based Bayesian RL is an extension of RL that has gained significant interest from the
AI community recently as it provides a principled approach to tackle the problem of exploration-
exploitation during learning and beyond, within the standard Bayesian inference paradigm. In this
framework, prior information about the problem (including uncertainty) is represented in parametric
form, and Bayesian inference is used to incorporate any new information about the model. Thus
the exploration-exploitation problem can be handled as an explicit sequential decision problem,
where the agent seeks to maximize future expected return with respect to its current uncertainty
on the model. An important limitation of this approach is that the decision-making process is
significantly more complex since it involves reasoning about all possible models and courses of
action. In addition, most work to date on this framework has been limited to caseswhere full
knowledge of the agent’s state is available at every time step (Dearden et al.,1999; Strens, 2000;
Duff, 2002; Wang et al., 2005; Poupart et al., 2006; Castro and Precup, 2007; Delage and Mannor,
2007).

The primary contribution of this paper is an extension of the model-based Bayesian reinforce-
ment learning to partially observable domains with discrete representations.1 In support of this, we
introduce a new mathematical model, called theBayes-Adaptive POMDP(BAPOMDP). This is a
model-based Bayesian RL approach, meaning that the framework maintains aposterior over the pa-

1. A preliminary version of this model was described by Ross et al. (2008a). The current paper provides an in-depth
development of this model, as well as novel theoretical analysis and newempirical results.
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rameters of the underlying POMDP domain.2 We derive optimal algorithms for belief tracking and
finite-horizon planning in this model. However, because the size of the state space in a BAPOMD
can be countably infinite, these are, for all practical purposes, intractable. We therefore dedicate
substantial attention to the problem of approximating the BAPOMDP model. We provide theo-
retical results for bounding the state space while preserving the value function. These results are
leveraged to derive a novel belief monitoring algorithm, which is used to maintaina posterior over
both model parameters, and state of the system. Finally, we describe an onlineplanning algorithm
which provides the core sequential decision-making component of the model.Both the belief track-
ing and planning algorithms are parameterized so as to allow a trade-off between computational
time and accuracy, such that the algorithms can be applied in real-time settings.

An in-depth empirical validation of the algorithms on challenging real-world scenarios is out-
side the scope of this paper, since our focus here is on the theoretical properties of the exact and
approximative approaches. Nonetheless we elaborate a tractable approach and characterize its per-
formance in three contrasting problem domains. Empirical results show that the BAPOMDP agent
is able to learn good POMDP models and improve its return as it learns better model estimates. Ex-
periments on the two smaller domains illustrate performance of the novel belief tracking algorithm,
in comparison to the well-known Monte-Carlo approximation methods. Experiments on the third
domain confirm good planning and learning performance on a larger domain; we also analyze the
impact of the choice of prior on the results.

The paper is organized as follows. Section 2 presents the models and methods necessary for
Bayesian reinforcement learning in the fully observable case. Section 3 extends these ideas to the
case of partially observable domains, focusing on the definition of the BAPOMDP model and exact
algorithms. Section 4 defines a finite approximation of the BAPOMDP model that could be used
to be solved by finite offline POMDP solvers. Section 5 presents a more tractable approach to
solving the BAPOMDP model based on online POMDP solvers. Section 6 illustrates the empirical
performance of the latter approach on sample domains. Finally, Section 7 discusses related Bayesian
approaches for simultaneous planning and learning in partially observabledomains.

2. Background and Notation

In this section we discuss the problem of model-based Bayesian reinforcement learning in the fully
observable case, in preparation for the extension of these ideas to the partially observable case
which is presented in Section 3. We begin with a quick review of Markov Decision Processes.
We then present the models and methods necessary for Bayesian RL in MDPs. This literature has
been developing over the last decade, and we aim to provide a brief but comprehensive survey of
the models and algorithms in this area. Readers interested in a more detailed presentation of the
material should seek additional references (Sutton and Barto, 1998; Duff, 2002).

2.1 Markov Decision Processes

We consider finite MDPs as defined by the following n-tuple(S,A,T,R,γ):

States:Sis a finite set of states, which represents all possible configurations of thesystem. A state
is essentially a sufficient statistic of what occurred in the past, such that what will occur in

2. This is in contrast to model-free Bayesian RL approaches, which maintain a posterior over the value function, for
example, Engel et al. (2003, 2005); Ghavamzadeh and Engel (2007b).
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the future only depends on the current state. For example, in a navigation task, the state is
usually the current position of the agent, since its next position usually only depends on the
current position, and not on previous positions.

Actions: A is a finite set of actions the agent can make in the system. These actions may influence
the next state of the system and have different costs/payoffs.

Transition Probabilities: T : S×A×S→ [0,1] is called the transition function. It models the
uncertainty on the future state of the system. Given the current states, and an actiona exe-
cuted by the agent,Tsas′ specifies the probability Pr(s′|s,a) of moving to states′. For a fixed
current states and actiona, Tsa· defines a probability distribution over the next states′, such
that ∑s′∈STsas′ = 1, for all (s,a). The definition ofT is based on theMarkov assumption,
which states that the transition probabilities only depend on the current state and action, that
is, Pr(st+1 = s′|at ,st , . . . ,a0,s0) = Pr(st+1 = s′|at ,st), whereat andst denote respectively the
action and state at timet. It is also assumed thatT is time-homogenous, that is, the transition
probabilities do not depend on the current time: Pr(st+1 = s′|at = a,st = s) =Pr(st = s′|at−1 =
a,st−1 = s) for all t.

Rewards: R : S×A→ R is the function which specifies the rewardR(s,a) obtained by the agent
for doing a particular actiona in current states. This models the immediate costs (nega-
tive rewards) and payoffs (positive rewards) incurred by performing different actions in the
system.

Discount Factor: γ ∈ [0,1) is a discount rate which allows a trade-off between short-term and
long-term rewards. A reward obtainedt-steps in the future is discounted by the factorγt .
Intuitively, this indicates that it is better to obtain a given reward now, ratherthan later in the
future.

Initially, the agent starts in some initial state,s0 ∈ S. Then at any timet, the agent chooses an
actionat ∈ A, performs it in the current statest , receives the rewardR(st ,at) and moves to the next
statest+1 with probabilityTstatst+1. This process is iterated until termination; the task horizon can
be specifieda priori, or determined by the discount factor.

We define apolicy, π : S→ A, to be a mapping from states to actions. The optimal policy,
denotedπ∗, corresponds to the mapping which maximizes the expected sum of discountedrewards
over a trajectory. Thevalueof the optimal policy is defined by Bellman’s equation:

V∗(s) = max
a∈A

[

R(s,a)+ γ ∑
s′∈S

Tsas′V∗(s′)

]

.

The optimal policy at a given state,π∗(s), is defined to be the action that maximizes the value at that
state,V∗(s). Thus the main objective of the MDP framework is to accurately estimate this value
function, so as to then obtain the optimal policy. There is a large literature on thecomputational
techniques that can be leveraged to solve this problem. A good starting pointis the recent text by
Szepesvari (2010).

A key aspect of reinforcement learning is the issue ofexploration. This corresponds to the
question of determining how the agent should choose actions while learning about the task. This is
in contrast to the phase calledexploitation, through which actions are selected so as to maximize
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expected reward with respect to the current value function estimate. The issues of value function
estimation and exploration are assumed to be orthogonal in much of the MDP literature. However
in many applications, where data is expensive or difficult to acquire, it is important to consider the
rewards accumulated during the learning phase, and to try to take this cost-of-learning into account
in the optimization of the policy.

In RL, most practical work uses a variety of heuristics to balance the exploration and exploita-
tion, including for example the well-knownε-greedy and Boltzmann strategies. The main problem
with such heuristic methods is that the exploration occurs randomly and is not focused on what
needs to be learned.

More recently, it has been shown that it is possible for an agent to reachnear-optimal perfor-
mance with high probability using only a polynomial number of steps (Kearns and Singh, 1998;
Brafman and Tennenholtz, 2003; Strehl and Littman, 2005), or alternatelyto have small regret with
respect to the optimal policy (Auer and Ortner, 2006; Tewari and Bartlett,2008; Auer et al., 2009).
Such theoretical results are highly encouraging, and in some cases lead toalgorithms which exhibit
reasonably good empirical performance.

2.2 Bayesian Learning

Bayesian Learning (or Bayesian Inference) is a general technique for learning the unknown param-
eters of a probability model from observations generated by this model. In Bayesian learning, a
probability distribution is maintained over all possible values of the unknown parameters. As ob-
servations are made, this probability distribution is updated via Bayes’ rule, and probability density
increases around the most likely parameter values.

Formally, consider a random variableX with probability densityfX|Θ over its domainX param-
eterized by the unknown vector of parametersΘ in some parameter spaceP . Let X1,X2, · · · ,Xn

be a random i.i.d. sample fromfX|Θ. Then by Bayes’ rule, the posterior probability density
gΘ|X1,X2,...,Xn

(θ|x1,x2, . . . ,xn) of the parametersΘ = θ, after the observations ofX1 = x1,X2 = x2, · · · ,
Xn = xn, is:

gΘ|X1,X2,...,Xn
(θ|x1,x2, . . . ,xn) =

gΘ(θ)∏n
i=1 fX|Θ(xi |θ)

∫
P gΘ(θ′)∏n

i=1 fX|Θ(xi |θ′)dθ′
,

wheregΘ(θ) is the prior probability density ofΘ = θ, that is,gΘ over the parameter spaceP is
a distribution that represents the initial belief (or uncertainty) on the values of Θ. Note that the
posterior can be defined recursively as follows:

gΘ|X1,X2,...,Xn
(θ|x1,x2, . . . ,xn) =

gΘ|X1,X2,...,Xn−1(θ|x1,x2, . . . ,xn−1) fX|Θ(xn|θ)
∫
P gΘ|X1,X2,...,Xn−1(θ′|x1,x2, . . . ,xn−1) fX|Θ(xn|θ′)dθ′

,

so that whenever we get thenth observation ofX, denotedxn, we can compute the new posterior
distributiongΘ|X1,X2,...,Xn

from the previous posteriorgΘ|X1,X2,...,Xn−1.
In general, updating the posterior distributiongΘ|X1,X2,...,Xn

is difficult due to the need to compute
the normalization constant

∫
P gΘ(θ)∏n

i=1 fX|Θ(xi |θ)dθ. However, for conjugate family distributions,
updating the posterior can be achieved very efficiently with a simple update ofthe parameters defin-
ing the posterior distribution (Casella and Berger, 2001).
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Formally, consider a particular classG of prior distributions over the parameter spaceP , and a
classF of likelihood functionsfX|Θ overX parameterized by parametersΘ ∈ P , thenF andG are
said to be conjugate if for any choice of priorgΘ ∈ G , likelihood fX|Θ ∈ F and observationX = x,
the posterior distributiongΘ|X after observation ofX = x is also inG .

For example, the Beta distribution3 is conjugate to the Binomial distribution.4 ConsiderX ∼
Binomial(n, p) with unknown probability parameterp, and consider a priorBeta(α,β) over the un-
known value ofp. Then following an observationX = x, the posterior overp is also Beta distributed
and is defined byBeta(α+x,β+n−x).

Another important issue with Bayesian methods is the need to specify a prior. While the in-
fluence of the prior tends to be negligible when provided with a large amount of data, its choice is
particularly important for any inference and decision-making performed when only a small amount
of data has been observed. In many practical problems, informative priors can be obtained from
domain knowledge. For example many sensors and actuators used in engineering applications have
specified confidence intervals on their accuracy provided by the manufacturer. In other applications,
such as medical treatment design or portfolio management, data about the problem may have been
collected for other tasks, which can guide the construction of the prior.

In the absence of any knowledge, uninformative priors can be specified. Under such priors, any
inference donea posterioriis dominated by the data, that is, the influence of the prior is minimal. A
common uninformative prior consists of using a distribution that is constant over the whole param-
eter space, such that every possible parameter has equal probability density. From an information
theoretic point of view, such priors have maximum entropy and thus contain the least amount of in-
formation about the true parameter (Jaynes, 1968). However, one problem with such uniform priors
is that typically, under different re-parameterization, one has different amounts of information about
the unknown parameters. A preferred uninformative prior, which is invariant under reparameteriza-
tion, is Jeffreys’ prior (Jeffreys, 1961).

The third issue of concern with Bayesian methods concerns the convergence of the posterior
towards the true parameter of the system. In general, the posterior density concentrates around
the parameters that have highest likelihood of generating the observed data in the limit. For finite
parameter spaces, and for smooth families with continuous finite dimensional parameter spaces, the
posterior converges towards the true parameter as long as the prior assigns non-zero probability to
every neighborhood of the true parameter. Hence in practice, it is often desirable to assign non-zero
prior density over the full parameter space.

It should also be noted that if multiple parameters within the parameter space cangenerate the
observed data with equal likelihood, then the posterior distribution will usuallybe multimodal, with
one mode surrounding each equally likely parameter. In such cases, it maybe impossible to identify
the true underlying parameter. However for practical purposes, suchas making predictions about
future observations, it is sufficient to identify any of the equally likely parameters.

Lastly, another concern is how fast the posterior converges towards the true parameters. This
is mostly influenced by how far the prior is from the true parameter. If the prior is poor, that is, it
assigns most probability density to parameters far from the true parameters,then it will take much
more data to learn the correct parameter than if the prior assigns most probability density around the

3. Beta(α,β) is defined by the density functionf (p|α,β) ∝ pα−1(1− p)β−1 for p∈ [0,1] and parametersα,β≥ 0.
4. Binomial(n, p) is defined by the density functionf (k|n, p) ∝ pk(1− p)n−k for k ∈ {0,1, . . . ,n} and parametersp∈

[0,1],n∈ N.
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true parameter. For such reasons, a safe choice is to use an uninformative prior, unless some data is
already available for the problem at hand.

2.3 Bayesian Reinforcement Learning in Markov Decision Processes

Work on model-based Bayesian reinforcement learning dates back to the days of Bellman, who
studied this problem under the name of Adaptive control processes (Bellman, 1961). An excellent
review of the literature on model-based Bayesian RL is provided in Duff (2002). This paper outlines,
where appropriate, more recent contributions in this area.

As a side note, model-free BRL methods also exist (Engel et al., 2003, 2005; Ghavamzadeh
and Engel, 2007a,b). Instead of representing the uncertainty on the model, these methods explicitly
model the uncertainty on the value function or optimal policy. These methods must often rely on
heuristics to handle the exploration-exploitation trade-off, but may be useful in cases where it is
easier to express prior knowledge about initial uncertainty on the value function or policy, rather
than on the model.

The main idea behind model-based BRL is to use Bayesian learning methods to learn the un-
known model parameters of the system, based on what is observed by the agent in the environment.
Starting from a prior distribution over the unknown model parameters, the agent updates a posterior
distribution over these parameters as it performs actions and gets observations from the environ-
ment. Under such a Bayesian approach, the agent can compute the best action-selection strategy by
finding the one that maximizes its future expected return under the current posterior distribution, but
also considering how this distribution will evolve in the future under different possible sequences of
actions and observations.

To formalize these ideas, consider an MDP(S,A,T,R,γ), whereS, A andRare known, andT is
unknown. Furthermore, assume thatSandA are finite. The unknown parameters in this case are the
transition probabilities,Tsas′ , for all s,s′ ∈S, a∈A. The model-based BRL approach to this problem
is to start off with a prior,g, over the space of transition functions,T. Now let s̄t = (s0,s1, . . . ,st)
and āt−1 = (a0,a1, . . . ,at−1) denote the agent’s history of visited states and actions up to timet.
Then the posterior over transition functions after this sequence is definedby:

g(T|s̄t , āt−1) ∝ g(T)∏t−1
i=0 Tsiaisi+1

∝ g(T)∏s∈S,a∈A ∏s′∈S(T
sas′)

Na
s,s′ (s̄t ,āt−1),

whereNa
s,s′(s̄t , āt−1) = ∑t−1

i=0 I{(s,a,s′)}(si ,ai ,si+1) is the number of times5 the transition(s,a,s′) oc-
curred in the history (s̄t , āt−1). As we can see from this equation, the likelihood

∏s∈S,a∈A ∏s′∈S(T
sas′)

Na
s,s′ (s̄t ,āt−1) is a product of|S||A| independent Multinomial6 distributions over

S. Hence, if we define the priorg as a product of|S||A| independent priors over each distribution
over next statesTsa·, that is,g(T) = ∏s∈S,a∈Ags,a(Tsa·), then the posterior is also defined as a prod-
uct of |S||A| independent posterior distributions:g(T|s̄t , āt−1) = ∏s∈S,a∈Ags,a(Tsa·|s̄t , āt−1), where
gs,a(Tsa·|s̄t , āt−1) is defined as:

gs,a(T
sa·|s̄t , āt−1) ∝ gs,a(T

sa·)∏
s′∈S

(Tsas′)
Na

s,s′ (s̄t ,āt−1).

5. We useI() to denote the indicator function.
6. Multinomialk(p,N) is defined by the density functionf (n|p,N) ∝ ∏k

i=1 pni
i for ni ∈ {0,1, . . . ,N} such that∑k

i=1ni =
N, parametersN ∈ N, andp is a discrete distribution overk outcomes.
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Furthermore, since the Dirichlet distribution is the conjugate of the Multinomial, it follows that
if the priorsgs,a(Tsa·) are Dirichlet distributions for alls,a, then the posteriorsgs,a(Tsa·|s̄t , āt−1) will
also be Dirichlet distributions for alls,a. The Dirichlet distribution is the multivariate extension of
the Beta distribution and defines a probability distribution over discrete distributions. It is parameter-
ized by a count vector,φ=(φ1, . . . ,φk), whereφi ≥ 0, such that the density of probability distribution
p= (p1, . . . , pk) is defined asf (p|φ) ∝ ∏k

i=1 pφi−1
i . If X ∼Multinomialk(p,N) is a random variable

with unknown probability distributionp= (p1, . . . , pk), andDirichlet(φ1, . . . ,φk) is a prior overp,
then after the observation ofX = n, the posterior overp is Dirichlet(φ1+n1, . . . ,φk+nk). Hence,
if the prior gs,a(Tsa·) is Dirichlet(φa

s,s1
, . . . ,φa

s,s|S|), then after the observation of history(s̄t , āt−1),
the posteriorgs,a(Tsa·|s̄t , āt−1) is Dirichlet(φa

s,s1
+Na

s,s1
(s̄t , āt−1), . . . ,φa

s,s|S| +Na
s,s|S|(s̄t , āt−1)). It fol-

lows that if φ = {φa
s,s′ |a ∈ A,s,s′ ∈ S} represents the set of all Dirichlet parameters defining the

current prior/posterior overT, then if the agent performs a transition(s,a,s′), the posterior Dirichlet
parametersφ′ after this transition are simply defined as:

φ′as,s′ = φa
s,s′+1,

φ′a′s′′,s′′′ = φa′
s′′,s′′′ ,∀(s′′,a′,s′′′) 6= (s,a,s′).

We denote this update by the functionU, whereU(φ,s,a,s′) returns the setφ′ as updated in the
previous equation.

Because of this convenience, most authors assume that the prior over thetransition function
T follows the previous independence and Dirichlet assumptions (Duff, 2002; Dearden et al., 1999;
Wang et al., 2005; Castro and Precup, 2007). We also make such assumptions throughout this paper.

2.3.1 BAYES-ADAPTIVE MDP MODEL

The core sequential decision-making problem of model-based Bayesian RL can be cast as the prob-
lem of finding a policy that maps extended states of the form(s,φ) to actionsa ∈ A, such as to
maximize the long-term rewards of the agent. If this decision problem can be modeled as an MDP
over extended states(s,φ), then by solving this new MDP, we would find such an optimal policy.
We now explain how to construct this MDP.

Consider a new MDP defined by the tuple(S′,A,T ′,R′,γ). We define the new set of states
S′ = S× T , whereT = {φ ∈ N

|S|2|A||∀(s,a) ∈ S×A,∑s′∈Sφa
ss′ > 0}, andA is the original action

space. Here, the constraints on the setT of possible count parametersφ are only needed to ensure
that the transition probabilities are well defined. To avoid confusion, we refer to the extended
states(s,φ) ∈ S′ as hyperstates. Also note that the next information stateφ′ only depends on the
previous information stateφ and the transition(s,a,s′) that occurred in the physical system, so
that transitions between hyperstates also exhibit the Markov property. Since we want the agent to
maximize the rewards it obtains in the physical system, the reward functionR′ should return the
same reward as in the physical system, as defined inR. Thus we defineR′(s,φ,a) = R(s,a). The
only remaining issue is to define the transition probabilities between hyperstates. The new transition
functionT ′ must specify the transition probabilitiesT ′(s,φ,a,s′,φ′) = Pr(s′,φ′|s,a,φ). By the chain
rule, Pr(s′,φ′|s,a,φ) = Pr(s′|s,a,φ)Pr(φ′|s,a,s′,φ). Since the update of the information stateφ to
φ′ is deterministic, then Pr(φ′|s,a,s′,φ) is either 0 or 1, depending on whetherφ′ = U(φ,s,a,s′)
or not. Hence Pr(φ′|s,a,s′,φ) = I{φ′}(U(φ,s,a,s′)). By the law of total probability, Pr(s′|s,a,φ) =
∫

Pr(s′|s,a,T,φ) f (T|φ)dT =
∫

Tsas′ f (T|φ)dT, where the integral is carried over transition function
T, and f (T|φ) is the probability density of transition functionT under the posterior defined by
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φ. The term
∫

Tsas′ f (T|φ)dT is the expectation ofTsas′ for the Dirichlet posterior defined by the

parametersφa
s,s1

, . . . ,φa
s,s|S| , which corresponds to

φa
s,s′

∑s′′∈Sφa
s,s′′

. Thus it follows that:

T ′(s,φ,a,s′,φ′) =
φa

s,s′

∑s′′∈Sφa
s,s′′

I{φ′}(U(φ,s,a,s′)).

We now have a new MDP with a known model. By solving this MDP, we can find theoptimal
action-selection strategy, givena posterioriknowledge of the environment. This new MDP has been
called the Bayes-Adaptive MDP (Duff, 2002) or the HyperMDP (Castroand Precup, 2007).

Notice that while we have assumed that the reward functionR is known, this BRL framework
can easily be extended to the case whereR is unknown. In such a case, one can proceed similarly by
using a Bayesian learning method to learn the reward functionRand add the posterior parameters for
R in the hyperstate. The new reward functionR′ then becomes the expected reward under the current
posterior overR, and the transition functionT ′ would also model how to update the posterior overR,
upon observation of any rewardr. For brevity of presentation, it is assumed that the reward function
is known throughout this paper. However, the frameworks we presentin the following sections can
also be extended to handle cases where the rewards are unknown, by following a similar reasoning.

2.3.2 OPTIMALITY AND VALUE FUNCTION

The Bayes-Adaptive MDP (BAMDP) is just a conventional MDP with a countably infinite number
of states. Fortunately, many theoretical results derived for standard MDPs carry over to the Bayes-
Adaptive MDP model (Duff, 2002). Hence, we know there exists an optimal deterministic policy
π∗ : S′→ A, and that its value function is defined by:

V∗(s,φ) = maxa∈A
[

R′(s,φ,a)+ γ∑(s′,φ′)∈S′ T
′(s,φ,a,s′,φ′)V∗(s′,φ′)

]

= maxa∈A

[

R(s,a)+ γ∑s′∈S
φa

s,s′
∑s′′∈Sφa

s,s′′
V∗(s′,U(φ,s,a,s′))

]

.
(1)

This value function is defined over an infinite number of hyperstates, therefore, in practice,
computingV∗ exactly for all hyperstates is unfeasible. However, since the summation over S is
finite, we observe that from one given hyperstate, the agent can transit only to a finite number of
hyperstates in one step. It follows that for any finite planning horizont, one can compute exactly
the optimal value function for a particular starting hyperstate. However the number of reachable
hyperstates grows exponentially with the planning horizon.

2.3.3 PLANNING ALGORITHMS

We now review existing approximate algorithms for estimating the value function in the BAMDP.
Dearden et al. (1999) proposed one of the first Bayesian model-based exploration methods for RL.
Instead of solving the BAMDP directly via Equation 1, the Dirichlet distributionsare used to com-
pute a distribution over the state-action valuesQ∗(s,a), in order to select the action that has the
highest expected return and value of information (Dearden et al., 1998). The distribution over Q-
values is estimated by sampling MDPs from the posterior Dirichlet distribution, and then solving
each sampled MDP to obtain different sampled Q-values. Re-sampling and importance sampling
techniques are proposed to update the estimated Q-value distribution as the Dirichlet posteriors are
updated.
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Rather than using a maximum likelihood estimate for the underlying process, Strens (2000)
proposes to fully represent the posterior distribution over process parameters. He then uses a greedy
behavior with respect to a sample from this posterior. By doing so, he retains each hypothesis over
a period of time, ensuring goal-directed exploratory behavior without the need to use approximate
measures or heuristic exploration as other approaches did. The number of steps for which each
hypothesis is retained limits the length of exploration sequences. The results of this method is then
an automatic way of obtaining behavior which moves gradually from exploration to exploitation,
without using heuristics.

Duff (2001) suggests using Finite-State Controllers (FSC) to representcompactly the optimal
policy π∗ of the BAMDP and then finding the best FSC in the space of FSCs of some bounded
size. A gradient descent algorithm is presented to optimize the FSC and a Monte-Carlo gradient
estimation is proposed to make it more tractable. This approach presupposesthe existence of a
good FSC representation for the policy.

For their part, Wang et al. (2005) present an online planning algorithm that estimates the optimal
value function of the BAMDP (Equation 1) using Monte-Carlo sampling. This algorithm is essen-
tially an adaptation of the Sparse Sampling algorithm (Kearns et al., 1999) to BAMDPs. However
instead of growing the tree evenly by looking at all actions at each level ofthe tree, the tree is grown
stochastically. Actions are sampled according to their likelihood of being optimal,according to
their Q-value distributions (as defined by the Dirichlet posteriors); next states are sampled accord-
ing to the Dirichlet posterior on the model. This approach requires multiple sampling and solving
of MDPs from the Dirichlet distributions to find which action has highest Q-value at each state node
in the tree. This can be very time consuming, and so far the approach has only been applied to small
MDPs.

Castro and Precup (2007) present a similar approach to Wang et al. However their approach
differs on two main points. First, instead of maintaining only the posterior over models, they also
maintain Q-value estimates using a standard Q-Learning method. Planning is done by growing a
stochastic tree as in Wang et al. (but sampling actions uniformly instead) and solving for the value
estimates in that tree using Linear Programming (LP), instead of dynamic programming. In this
case, the stochastic tree represents sampled constraints, which the value estimates in the tree must
satisfy. The Q-value estimates maintained by Q-Learning are used as value estimates for the fringe
nodes (thus as value constraints on the fringe nodes in the LP).

Finally, Poupart et al. (2006) proposed an approximate offline algorithmto solve the BAMDP.
Their algorithm, called Beetle, is an extension of the Perseus algorithm (Spaan and Vlassis, 2005)
to the BAMDP model. Essentially, at the beginning, hyperstates(s,φ) are sampled from random
interactions with the BAMDP model. An equivalent continuous POMDP (over the space of states
and transition functions) is solved instead of the BAMDP (assuming(s,φ) is a belief state in that
POMDP). The value function is represented by a set ofα-functionsover the continuous space of
transition functions. Eachα-function is constructed as a linear combination of basis functions;
the sampled hyperstates can serve as the set of basis functions. Dynamic programming is used to
incrementally construct the set ofα-functions. At each iteration, updates are only performed at the
sampled hyperstates, similarly to Perseus (Spaan and Vlassis, 2005) and other Point-Based POMDP
algorithms (Pineau et al., 2003).
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3. Bayes-Adaptive POMDPs

Despite the sustained interest in model-based BRL, the deployment to real-world applications is
limited both by scalability and representation issues. In terms of representation, an important chal-
lenge for many practical problems is in handling cases where the state of the system is only partially
observable. Our goal here is to show that the model-based BRL framework can be extended to han-
dle partially observable domains. Section 3.1 provides a brief overview of the Partially Observable
Markov Decision Process framework. In order to apply Bayesian RL methods in this context, we
draw inspiration from the Bayes-Adaptive MDP framework presented in Section 2.3, and propose
an extension of this model, called the Bayes-Adaptive POMDP (BAPOMDP).One of the main
challenges that arises when considering such an extension is how to update the Dirichlet count
parameters when the state is a hidden variable. As will be explained in Section 3.2, this can be
achieved by including the Dirichlet parameters in the state space, and maintaining a belief state
over these parameters. The BAPOMDP model thus allows an agent to improveits knowledge of an
unknown POMDP domain through interaction with the environment, but also allows the decision-
making aspect to be contingent on uncertainty over the model parameters. As a result, it is possible
to define an action-selection strategy which can directly trade-off between(1) learning the model
of the POMDP, (2) identifying the unknown state, and (3) gathering rewards, such as to maximize
its future expected return. This model offers an alternative framework for reinforcement learning in
POMDPs, compared to previous history-based approaches (McCallum, 1996; Littman et al., 2002).

3.1 Background on POMDPs

While an MDP is able to capture uncertainty on future outcomes, and the BAMDPis able to capture
uncertainty over the model parameters, both fail to capture uncertainty thatcan exist on the current
state of the system at a given time step. For example, consider a medical diagnosis problem where
the doctor must prescribe the best treatment to an ill patient. In this problem thestate (illness) of
the patient is unknown, and only its symptoms can be observed. Given the observed symptoms the
doctor may believe that some illnesses are more likely, however he may still havesome uncertainty
about the exact illness of the patient. The doctor must take this uncertainty intoaccount when
deciding which treatment is best for the patient. When the uncertainty is high, the best action may
be to order additional medical tests in order to get a better diagnosis of the patient’s illness.

To address such problems, the Partially Observable Markov Decision Process (POMDP) was
proposed as a generalization of the standard MDP model. POMDPs are ableto model and reason
about the uncertainty on the current state of the system in sequential decision problems (Sondik,
1971).

A POMDP is defined by a finite set of statesS, a finite set of actionsA, as well as a finite set
of observationsZ. These observations capture the aspects of the state which can be perceived by
the agent. The POMDP is also defined by transition probabilities{Tsas′}s,s′∈S,a∈A, whereTsas′ =
Pr(st+1 = s′|st = s,at = a), as well as observation probabilities{Osaz}s∈S,a∈A,z∈Z whereOsaz=
Pr(zt = z|st = s,at−1 = a). The reward function,R : S×A→ R, and discount factor,γ, are as in the
MDP model.

Since the state is not directly observed, the agent must rely on the observation and action at each
time step to maintain a belief stateb∈ ∆S, where∆S is the space of probability distributions over
S. The belief state specifies the probability of being in each state given the history of action and
observation experienced so far, starting from an initial beliefb0. It can be updated at each time step
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using the following Bayes rule:

bt+1(s
′) =

Os′atzt+1 ∑s∈STsats′bt(s)

∑s′′∈sOs′′atzt+1 ∑s∈STsats′′bt(s)
.

A policy π : ∆S→ A indicates how the agent should select actions as a function of the current
belief. Solving a POMDP involves finding the optimal policyπ∗ that maximizes the expected dis-
counted return over the infinite horizon. The return obtained by followingπ∗ from a beliefb is
defined by Bellman’s equation:

V∗(b) = max
a∈A

[

∑
s∈S

b(s)R(s,a)+ γ ∑
z∈Z

Pr(z|b,a)V∗(τ(b,a,z))
]

,

whereτ(b,a,z) is the new belief after performing actiona and observationz,andγ ∈ [0,1) is the
discount factor.

A key result by Smallwood and Sondik (1973) shows that the optimal value function for a finite-
horizon POMDP is piecewise-linear and convex. It means that the value functionVt at any finite
horizont can be represented by a finite set of|S|-dimensional hyperplanes:Γt = {α0,α1, . . . ,αm}.
These hyperplanes are often calledα-vectors. Each defines a linear value function over the belief
state space, associated with some action,a∈ A. The value of a belief state is the maximum value
returned by one of theα-vectors for this belief state:

Vt(b) = max
α∈Γt

∑
s∈S

α(s)b(s).

The best action is the one associated with theα-vector that returns the best value.
The Enumeration algorithm by Sondik (1971) shows how the finite set ofα-vectors,Γt , can

be built incrementally via dynamic programming. The idea is that anyt-step contingency plan can
be expressed by an immediate action and a mapping associating a (t-1)-step contingency plan to
every observation the agent could get after this immediate action. The value of the 1-step plans
corresponds directly to the immediate rewards:

Γa
1 = {αa|αa(s) = R(s,a)},

Γ1 =
⋃

a∈A Γa
1.

Then to build theα-vectors at timet, we consider all possible immediate actions the agent could
take, every observation that could follow, and every combination of (t-1)-step plans to pursue sub-
sequently:

Γa,z
t = {αa,z|αa,z(s) = γ∑s′∈STsas′Os′azα′(s′),α′ ∈ Γt−1},
Γa

t = Γa
1⊕Γa,z1

t ⊕Γa,z2
t ⊕ . . .⊕Γa,z|Z|

t ,
Γt =

⋃
a∈A Γa

t ,

where⊕ is the cross-sum operator.7

Exactly solving the POMDP is usually intractable, except on small domains with only a few
states, actions and observations (Kaelbling et al., 1998). Various approximate algorithms, both
offline (Pineau et al., 2003; Spaan and Vlassis, 2005; Smith and Simmons, 2004) and online (Paquet

7. LetA andB be sets of vectors, thenA⊕B= {a+b|a∈ A,b∈ B}.
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et al., 2005; Ross et al., 2008c), have been proposed to tackle increasingly large domains. However,
all these methods require full knowledge of the POMDP model, which is a strong assumption in
practice. Some approaches do not require knowledge of the model, as in Baxter and Bartlett (2001),
but these approaches generally require some knowledge of a good (and preferably compact) policy
class, as well as needing substantial amounts of data.

3.2 Bayesian Learning of a POMDP model

Before we introduce the full BAPOMDP model for sequential decision-making under model uncer-
tainty in a POMDP, we first show how a POMDP model can be learned via a Bayesian approach.

Consider an agent in a POMDP(S,A,Z,T,O,R,γ), where the transition functionT and observa-
tion functionO are the only unknown components of the POMDP model. Let ¯zt = (z1,z2, . . . ,zt) be
the history of observations of the agent up to timet. Recall also that we denote ¯st = (s0,s1, . . . ,st)
andāt−1 = (a0,a1, . . . ,at−1) the history of visited states and actions respectively. The Bayesian ap-
proach to learningT andO involves starting with a prior distribution overT andO, and maintaining
the posterior distribution overT andO after observing the history(āt−1, z̄t). Since the current state
st of the agent at timet is unknown in the POMDP, we consider a joint posteriorg(st ,T,O|āt−1, z̄t)
overst , T, andO. By the laws of probability and Markovian assumption of the POMDP, we have:

g(st ,T,O|āt−1, z̄t) ∝ Pr(z̄t ,st |T,O, āt−1)g(T,O, āt−1)
∝ ∑s̄t−1∈St Pr(z̄t , s̄t |T,O, āt−1)g(T,O)
∝ ∑s̄t−1∈St g(s0,T,O)∏t

i=1Tsi−1ai−1si Osiai−1zi

∝ ∑s̄t−1∈St g(s0,T,O)
[

∏s,a,s′(T
sas′)Na

ss′ (s̄t ,āt−1)
]

×
[

∏s,a,z(O
saz)Na

sz(s̄t ,āt−1,z̄t)
]

,

whereg(s0,T,O) is the joint prior over the initial states0, transition functionT, and observation
function O; Na

ss′(s̄t , āt−1) = ∑t−1
i=0 I{(s,a,s′)}(si ,ai ,si+1) is the number of times the transition(s,a,s′)

appears in the history of state-action(s̄t , āt−1); and Na
sz(s̄t , āt−1, z̄t) = ∑t

i=1 I{(s,a,z)}(si ,ai−1,zi) is
the number of times the observation(s,a,z) appears in the history of state-action-observations
(s̄t , āt−1, z̄t). We use proportionality rather than equality in the expressions above because we have
not included the normalization constant.

Under the assumption that the priorg(s0,T,O) is defined by a product of independent priors of
the form:

g(s0,T,O) = g(s0)∏
s,a

gsa(T
sa·)gsa(O

sa·),

and thatgsa(Tsa·) andgsa(Osa·) are Dirichlet priors defined∀s,a, then we observe that the posterior
is a mixture of joint Dirichlets, where each joint Dirichlet component is parameterized by the counts
corresponding to one specific possible state sequence:

g(st ,T,O|āt−1, z̄t) ∝ ∑s̄t−1∈St g(s0)c(s̄t , āt−1, z̄t)×
[

∏s,a,s′(T
sas′)Na

ss′ (s̄t ,āt−1)+φa
ss′−1

]

×
[

∏s,a,z(O
saz)Na

sz(s̄t ,āt−1,z̄t)+ψa
sz−1

]

.

(2)

Here, φa
s· are the prior Dirichlet count parameters forgsa(Tsa·), ψa

s· are the prior Dirichlet count
parameters forgsa(Osa·), andc(s̄t , āt−1, z̄t) is a constant which corresponds to the normalization
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constant of the joint Dirichlet component for the state-action-observationhistory(s̄t , āt−1, z̄t). Intu-
itively, Bayes’ rule tells us that given a particular state sequence, it is possible to compute the proper
posterior counts of the Dirichlets, but since the state sequence that actuallyoccurred is unknown,
all state sequences (and their corresponding Dirichlet posteriors) mustbe considered, with some
weight proportional to the likelihood of each state sequence.

In order to update the posterior online, each time the agent performs an action and gets an
observation, it is more useful to express the posterior in recursive form:

g(st ,T,O|āt−1, z̄t) ∝ ∑
st−1∈S

Tst−1at−1st Ostat−1zt g(st−1,T,O|āt−2, z̄t−1).

Hence if g(st−1,T,O|āt−2, z̄t−1) = ∑(φ,ψ)∈C (st−1)w(st−1,φ,ψ) f (T,O|φ,ψ) is a mixture of
|C (st−1)| joint Dirichlet components, where each component(φ,ψ) is parameterized by the set
of transition countsφ = {φa

ss′ ∈ N|s,s′ ∈ S,a∈ A} and the set observation countsψ = {ψa
sz∈ N|s∈

S,a∈A,z∈ Z}, theng(st ,T,O|āt−1, z̄t) is a mixture of∏s∈S|C (s)| joint Dirichlet components, given
by:

g(st ,T,O|āt−1, z̄t) ∝ ∑st−1∈S∑(φ,ψ)∈C (st−1)w(st−1,φ,ψ)c(st−1,at−1,st ,zt−1,φ,ψ)
f (T,O|U(φ,st−1,at−1,st),U(ψ,st ,at−1,zt)),

whereU(φ,s,a,s′) increments the countφa
ss′ by one in the set of countsφ, U(ψ,s,a,z) increments

the countψa
szby one in the set of countsψ, andc(st−1,at−1,st ,zt−1,φ,ψ) is a constant corresponding

to the ratio of the normalization constants of the joint Dirichlet component(φ,ψ) before and after
the update with(st−1,at−1,st ,zt−1). This last equation gives us an online algorithm to maintain the
posterior over(s,T,O), and thus allows the agent to learn about the unknownT andO via Bayesian
inference.

Now that we have a simple method of maintaining the uncertainty over both the state and model
parameters, we would like to address the more interesting question of how to optimally behave
in the environment under such uncertainty, in order to maximize future expected return. Here we
proceed similarly to the Bayes-Adaptive MDP framework defined in Section 2.3.

First, notice that the posteriorg(st ,T,O|āt−1, z̄t) can be seen as a probability distribution (belief)
b over tuples(s,φ,ψ), where each tuple represents a particular joint Dirichlet component parame-
terized by the counts(φ,ψ) for a state sequence ending in states (i.e., the current state iss), and
the probabilities in the beliefb correspond to the mixture weights. Now we would like to find a
policy π for the agent which maps such beliefs over(s,φ,ψ) to actionsa ∈ A. This suggests that
the sequential decision problem of optimally behaving under state and model uncertainty can be
modeled as a POMDP over hyperstates of the form(s,φ,ψ).

Consider a new POMDP(S′,A,Z,P′,R′,γ), where the set of states (hyperstates) is formally de-
fined asS′ = S× T ×O, with T = {φ ∈ N

|S|2|A||∀(s,a) ∈ S×A, ∑s′∈Sφa
ss′ > 0} andO = {ψ ∈

N
|S||A||Z||∀(s,a) ∈ S×A, ∑z∈Z ψa

sz> 0}. As in the definition of the BAMDP, the constraints on
the count parametersφ and ψ are only to ensure that the transition-observation probabilities, as
defined below, are well defined. The action and observation sets are thesame as in the origi-
nal POMDP. The rewards depend only on the states∈ S and actiona ∈ A (but not the countsφ
andψ), thus we haveR′(s,φ,ψ,a) = R(s,a). The transition and observations probabilities in the
BAPOMDP are defined by a joint transition-observation functionP′ : S′×A×S′×Z→ [0,1], such

1742



BAYES-ADAPTIVE POMDPS

that P′(s,φ,ψ,a,s′,φ′,ψ′,z) = Pr(s′,φ′,ψ′,z|s,φ,ψ,a). This joint probability can be factorized by
using the laws of probability and standard independence assumptions:

Pr(s′,φ′,ψ′,z|s,φ,ψ,a)
= Pr(s′|s,φ,ψ,a)Pr(z|s,φ,ψ,a,s′)Pr(φ′|s,φ,ψ,a,s′,z)Pr(ψ′|s,φ,ψ,a,s′,φ′,z)
= Pr(s′|s,a,φ)Pr(z|a,s′,ψ)Pr(φ′|φ,s,a,s′)Pr(ψ′|ψ,a,s′,z).

As in the Bayes-Adaptive MDP case, Pr(s′|s,a,φ) corresponds to the expectation of Pr(s′|s,a)
under the joint Dirichlet posterior defined byφ, and Pr(φ′|φ,s,a,s′) is either 0 or 1, depending
on whetherφ′ corresponds to the posterior after observing transition(s,a,s′) from prior φ. Hence

Pr(s′|s,a,φ) =
φa

ss′
∑s′′∈Sφa

ss′′
, and Pr(φ′|φ,s,a,s′) = I{φ′}(U(φ,s,a,s′)). Similarly, Pr(z|a,s′,ψ) =

∫
Os′azf (O|ψ)dO, which is the expectation of the Dirichlet posterior for Pr(z|s′,a), and

Pr(ψ′|ψ,a,s′,z), is either 0 or 1, depending on whetherψ′ corresponds to the posterior after ob-

serving observation(s′,a,z) from prior ψ. Thus Pr(z|a,s′,ψ) = ψa
s′z

∑z′∈Z ψa
s′z′

, and Pr(ψ′|ψ,a,s′,z) =

I{ψ′}(U(ψ,s′,a,z)). To simplify notation, we denoteTsas′
φ =

φa
ss′

∑s′′∈Sφa
ss′′

andOs′az
ψ =

ψa
s′z

∑z′∈Z ψa
s′z′

. It fol-

lows that the joint transition-observation probabilities in the BAPOMDP are defined by:

Pr(s′,φ′,ψ′,z|s,φ,ψ,a) = Tsas′
φ Os′az

ψ I{φ′}(U(φ,s,a,s′))I{ψ′}(U(ψ,s′,a,z)).
Hence, the BAPOMDP defined by the POMDP(S′,A,Z,P′,R′,γ) has a known model and char-

acterizes the problem of optimal sequential decision-making in the original POMDP
(S,A,Z,T,O,R,γ) with uncertainty on the transitionT and observation functionsO described by
Dirichlet distributions.

An alternative interpretation of the BAPOMDP is as follows: given the unknown state sequence
that occurred since the beginning, one can compute exactly the posterior countsφ andψ. Thus there
exists a unique (φ,ψ) reflecting the correct posterior counts according to the state sequencethat
occurred, but these correct posterior counts are only partially observable through the observations
z∈ Z obtained by the agent. Thus(φ,ψ) can simply be thought of as other hidden state variables
that the agent tracks via the belief state, based on its observations. The BAPOMDP formulates the
decision problem of optimal sequential decision-making under partial observability of both the state
s∈ S, and posterior counts(φ,ψ).

The belief state in the BAPOMDP corresponds exactly to the posterior defined in the previous
section (Equation 2). By maintaining this belief, the agent maintains its uncertaintyon the POMDP
model and learns about the unknown transition and observations functions. Initially, if φ0 andψ0

represent the prior Dirichlet count parameters (i.e., the agent’s prior knowledge ofT andO), and
b0 the initial state distribution of the unknown POMDP, then the initial beliefb′0 of the BAPOMDP
is defined asb′0(s,φ,ψ) = b0(s)I{φ0}(φ)I{ψ0}(ψ). Since the BAPOMDP is just a POMDP with an
infinite number of states, the belief update and value function equations presented in Section 3.1
can be applied directly to the BAPOMDP model. However, since there is an infinite number of
hyperstates, these calculations can be performed exactly in practice only ifthe number of possible
hyperstates in the belief is finite. The following theorem shows that this is the case at any finite time
t:

Theorem 1 Let (S′,A,Z,P′,R′,γ) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,O,R,γ). If S is finite, then at any time t, the set S′b′t = {σ ∈ S′|b′t(σ)> 0} has size|S′b′t | ≤
|S|t+1.
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function τ(b,a,z)
Initialize b′ as a 0 vector.
for all (s,φ,ψ) ∈ S′b do

for all s′ ∈ Sdo
φ′←U(φ,s,a,s′)
ψ′←U(ψ,s′,a,z)
b′(s′,φ′,ψ′)← b′(s′,φ′,ψ′)+b(s,φ,ψ)Tsas′

φ Os′az
ψ

end for
end for
return normalizedb′

Algorithm 1: Exact Belief Update in BAPOMDP.

Proof Proof available in Appendix A.

The proof of Theorem 1 suggests that it is sufficient to iterate overS and S′b′t−1
in order to

compute the belief stateb′t when an action and observation are taken in the environment. Hence, we
can update the belief state in closed-form, as outlined in Algorithm 1. Of course this algorithm is not
tractable for large domains with long action-observation sequences. Section5 provides a number of
approximate tracking algorithms which tackle this problem.

3.3 Exact Solution for the BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be representedby a finite setΓ of func-
tionsα : S′→ R, as in standard POMDPs. This is shown formally in the following theorem:

Theorem 2 For any horizon t, there exists a finite setΓt of functions S′ → R, such that V∗t (b) =
maxα∈Γt ∑σ∈S′ α(σ)b(σ).

Proof Proof available in the appendix.

The proof of this theorem shows that as in any POMDP, an exact solution of the BAPOMDP
can be computed using dynamic programming, by incrementally constructing the set ofα-functions
that defines the value function as follows:

Γa
1 = {αa|αa(s,φ,ψ) = R(s,a)},

Γa,z
t = {αa,z|αa,z(s,φ,ψ) = γ∑s′∈STsas′

φ Os′az
ψ α′(s′,U(φ,s,a,s′),U(ψ,s′,a,z)),

α′ ∈ Γt−1},
Γa

t = Γa
1⊕Γa,z1

t ⊕Γa,z2
t ⊕·· ·⊕Γa,z|Z|

t , (where⊕ is the cross sum operator),
Γt =

⋃
a∈A Γa

t .

However in practice, it will be impossible to computeαa,z
i (s,φ,ψ) for all (s,φ,ψ) ∈ S′, unless

a particular finite parametric form for theα-functions is used. Poupart and Vlassis (2008) showed
that theseα-functions can be represented as a linear combination of product of Dirichlets and can
thus be represented by a finite number of parameters. Further discussionof their work is included
in Section 7. We present an alternate approach in Section 5.
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4. Approximating the BAPOMDP by a Finite POMDP

Solving the BAPOMDP exactly for all belief states is often impossible due to the dimensionality
of the state space, in particular because the count vectors can grow unbounded. The first proposed
method to address this problem is to reduce this infinite state space to a finite state space, while
preserving the value function of the BAPOMDP to arbitrary precision. Thisallows us to compute
anε-optimal value function over the resulting finite-dimensional belief space using standard finite
POMDP solvers. This can then be used to obtain anε-optimal policy to the BAPOMDP.

The main intuition behind the compression of the state space presented here is that, as the
Dirichlet counts grow larger and larger, the transition and observation probabilities defined by these
counts do not change much when the counts are incremented by one. Hence, there should exist
a point where if we simply stop incrementing the counts, the value function of that approximate
BAPOMDP (where the counts are bounded) approximates the value function of the BAPOMDP
within someε > 0. If we can bound above the counts in such a way, this ensures that the state space
will be finite.

In order to find such a bound on the counts, we begin by deriving an upper bound on the value
difference between two hyperstates that differ only by their model estimatesφ andψ. This bound

uses the following definitions: givenφ,φ′ ∈T , andψ,ψ′ ∈O, defineDsa
S (φ,φ′)=∑s′∈S

∣

∣

∣
Tsas′

φ −Tsas′
φ′

∣

∣

∣
,

Dsa
Z (ψ,ψ′) = ∑z∈Z

∣

∣

∣
Osaz

ψ −Osaz
ψ′

∣

∣

∣
, N sa

φ = ∑s′∈Sφa
ss′ , andN sa

ψ = ∑z∈Z ψa
sz.

Theorem 3 Given anyφ,φ′ ∈ T , ψ,ψ′ ∈ O, andγ ∈ (0,1), then for all t:

sup
αt∈Γt ,s∈S

|αt(s,φ,ψ)−αt(s,φ′,ψ′)| ≤ 2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Dsa
S (φ,φ′)+Ds′a

Z (ψ,ψ′)

+ 4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +1)(N sa
φ′ +1) +

∑z∈Z|ψa
s′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

Proof Proof available in the appendix.

We now use this bound on theα-vector values to approximate the space of Dirichlet parameters

within a finite subspace. We use the following definitions: given anyε > 0, defineε′ = ε(1−γ)2

8γ||R||∞ ,

ε′′ = ε(1−γ)2 ln(γ−e)
32γ||R||∞ , Nε

S = max
(

|S|(1+ε′)
ε′ , 1

ε′′ −1
)

andNε
Z = max

(

|Z|(1+ε′)
ε′ , 1

ε′′ −1
)

.

Theorem 4 Given anyε > 0 and(s,φ,ψ) ∈ S′ such that∃a∈ A,∃s′ ∈ S,N s′a
φ > Nε

S or N s′a
ψ > Nε

Z,

then∃(s,φ′,ψ′)∈S′ such that∀a∈A,∀s′ ∈S,N s′a
φ′ ≤Nε

S,N s′a
ψ′ ≤Nε

Z and|αt(s,φ,ψ)−αt(s,φ′,ψ′)|<
ε holds for all t andαt ∈ Γt .

Proof Proof available in the appendix.

Theorem 4 suggests that if we want a precision ofε on the value function, we just need to restrict
the space of Dirichlet parameters to count vectorsφ ∈ T̃ε = {φ ∈ N

|S|2|A||∀a∈ A,s∈ S,0< N sa
φ ≤

Nε
S}, andψ ∈ Õε = {ψ ∈ N

|S||A||Z||∀a∈ A,s∈ S,0<N sa
ψ ≤ Nε

Z}. SinceT̃ε andÕε are finite, we can

define a finite approximate BAPOMDP as the tuple(S̃ε,A,Z, P̃ε, R̃ε,γ), whereS̃ε = S× T̃ε× Õε is
the finite state space, and̃Pε is the joint transition-observation function over this finite state space.

1745



ROSS, PINEAU , CHAIB -DRAA AND KREITMANN

To define this function, we need to ensure that whenever the count vectors are incremented, they
stay within the finite space. To achieve this, we define a projection operatorPε : S′→ S̃ε that simply
projects every state inS′ to their closest state iñSε.

Definition 1 Let d : S′×S′→ R be defined such that:

d(s,φ,ψ,s′,φ′,ψ′) =



























2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Dsa
S (φ,φ′)+Ds′a

Z (ψ,ψ′)

+ 4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N as

φ +1)(N as
φ′ +1) +

∑z∈Z |ψa
s′z−ψ′a

s′z|
(N as′

ψ +1)(N as′
ψ′ +1)

)]

,
if s= s′

8γ||R||∞
(1−γ)2

(

1+ 4
ln(γ−e)

)

+ 2||R||∞
(1−γ) , otherwise.

Definition 2 LetPε : S′→ S̃ε be defined asPε(s) = argmin
s′∈S̃ε

d(s,s′).

The functiond uses the bound defined in Theorem 3 as a distance between states that onlydiffer
in their φ andψ vectors, and uses an upper bound on that value when the states differ.ThusPε
always maps states(s,φ,ψ) ∈ S′ to some state(s,φ′,ψ′) ∈ S̃ε. Note that ifσ ∈ S̃ε, thenPε(σ) = σ.
UsingPε, the joint transition-observation function can then be defined as follows:

P̃ε(s,φ,ψ,a,s′,φ′,ψ′,z) = Tsas′
φ Os′az

ψ I{(s′,φ′,ψ′)}(Pε(s
′,U(φ,s,a,s′),U(ψ,s′,a,z))).

This definition is the same as the one in the BAPOMDP, except that now an extraprojection
is added to make sure that the incremented count vectors stay inS̃ε. Finally, the reward func-
tion R̃ε : S̃ε×A→ R is defined asR̃ε((s,φ,ψ),a) = R(s,a). This defines a proper finite POMDP
(S̃ε,A,Z, P̃ε, R̃ε,γ), which can be used to approximate the original BAPOMDP model.

Next, we are interested in characterizing the quality of solutions that can be obtained with this
finite model. Theorem 5 bounds the value difference betweenα-vectors computed with this finite
model and theα-vector computed with the original model.

Theorem 5 Given anyε> 0, (s,φ,ψ)∈S′ andαt ∈Γt computed from the infinite BAPOMDP. Letα̃t

be theα-vector representing the same conditional plan asαt but computed with the finite POMDP
(S̃ε,A,Z, T̃ε,Õε, R̃ε,γ), then|α̃t(Pε(s,φ,ψ))−αt(s,φ,ψ)|< ε

1−γ .

Proof Proof available in the appendix. To summarize, it solves a recurrence over the 1-step approx-
imation in Theorem 4.

Such bounded approximation over theα-functions of the BAPOMDP implies that the optimal
policy obtained from the finite POMDP approximation has an expected value close to the value of
the optimal policy of the full (non-projected) BAPOMDP:

Theorem 6 Given anyε > 0, and any horizon t, let̃πt be the optimal t-step policy computed from
the finite POMDP(S̃ε,A,Z, T̃ε,Õε, R̃ε,γ), then for any initial belief b the value of executing policy
π̃t in the BAPOMDP Ṽπt (b)≥V∗(b)−2 ε

1−γ .

Proof Proof available in the appendix, and follows from Theorem 5.

We note that the last two theorems hold even if we construct the finite POMDP withthe follow-
ing approximate state projectioñPε, which is more easy to use in practice:

1746



BAYES-ADAPTIVE POMDPS

Definition 3 Let P̃ε : S′→ S̃ε be defined as̃Pε(s,φ,ψ) = (s, φ̂, ψ̂) where:

φ̂a
s′,s′′ =

{

φa
s′,s′′ if N s′a

φ ≤ Nε
S

⌊Nε
STs′as′′

φ ⌋ if N s′a
φ > Nε

S

ψ̂a
s′,z =

{

ψa
s′,z if N s′a

ψ ≤ Nε
Z

⌊Nε
ZOs′az

ψ ⌋ if N s′a
ψ > Nε

Z

This follows from the proof of Theorem 5, which only relies on such a projection, and not on the
projection that minimizesd (as done byPε).

Given that the state space is now finite, offline solution methods from the literature on finite
POMDPs could potentially be applied to obtain anε-optimal policy to the BAPOMDP. Note how-
ever that even though the state space is finite, it will generally be very largefor smallε, such that
the resulting finite POMDP may still be intractable to solve offline, even for small domains.

An alternative approach is to solve the BAPOMDP online, by focusing on finding the best
immediate action to perform in the current belief of the agent, as in online POMDPsolution meth-
ods (Ross et al., 2008c). In fact, provided we have an efficient way of updating the belief, online
POMDP solvers can be applied directly in the infinite BAPOMDP without requiringa finite ap-
proximation of the state space. In practice, maintaining the exact belief in the BAPOMDP quickly
becomes intractable (exponential in the history length, as shown in Theorem1). The next section
proposes several practical efficient approximations for both belief updating and online planning in
the BAPOMDP.

5. Towards a Tractable Approach to BAPOMDPs

Having fully specified the BAPOMDP framework and its finite approximation, wenow turn our
attention to the problem of scalable belief tracking and planning in this framework. This section is
intentionally briefer, as many of the results in the probabilistic reasoning literature can be applied to
the BAPOMDP framework. We outline those methods which have proven effective in our empirical
evaluations.

5.1 Approximate Belief Monitoring

As shown in Theorem 1, the number of states with non-zero probability grows exponentially in the
planning horizon, thus exact belief monitoring can quickly become intractable. This problem is
not unique to the Bayes-optimal POMDP framework, and was observed in the context of Bayes nets
with missing data (Heckerman et al., 1995). We now discuss different particle-based approximations
that allow polynomial-time belief tracking.

Monte-Carlo Filtering : Monte-Carlo filtering algorithms have been widely used for sequential
state estimation (Doucet et al., 2001). Given a prior beliefb, followed by actiona and observationz,
the new beliefb′ is obtained by first samplingK states from the distributionb, then for each sampled
s a new states′ is sampled fromTsa·. Finally, the probabilityOs′az is added tob′(s′) and the belief
b′ is re-normalized. This will capture at mostK states with non-zero probabilities. In the context of
BAPOMDPs, we use a slight variation of this method, where(s,φ,ψ) are first sampled fromb, and
then a next states′ ∈ S is sampled from the normalized distributionTsa·

φ O·az
ψ . The probability 1/K is

added directly tob′(s′,U(φ,s,a,s′),U(ψ,s,a,s′)).
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function WD(b,a,z,K)
b′← τ(b,a,z)
Initialize b′′ as a 0 vector.
(s,φ,ψ)← argmax(s′,φ′,ψ′)∈S′

b′
b′(s′,φ′,ψ′)

b′′(s,φ,ψ)← b′(s,φ,ψ)
for i = 2 toK do

(s,φ,ψ)← argmax(s′,φ′,ψ′)∈S′
b′

b′(s′,φ′,ψ′)min(s′′,φ′′,ψ′′)∈S′
b′′

d(s′,φ′,ψ′,s′′,φ′′,ψ′′)
b′′(s,φ,ψ)← b′(s,φ,ψ)

end for
return normalizedb′′

Algorithm 2: Weighted Distance Belief Update in BAPOMDP.

Most Probable: Another possibility is to perform the exact belief update at a given time step,
but then only keep theK most probable states in the new beliefb′, and re-normalizeb′. This
minimizes theL1 distance between the exact beliefb′ and the approximate belief maintained withK
particles.8 While keeping only theK most probable particles biases the belief of the agent, this can
still be a good approach in practice, as minimizing theL1 distance bounds the difference between
the values of the exact and approximate belief: that is,|V∗(b)−V∗(b′)| ≤ ||R||∞1−γ ||b−b′||1.

Weighted Distance Minimization: Finally, we consider an belief approximation technique
which aims to directly minimize the difference in value function between the approximate and exact
belief state by exploiting the upper bound on the value difference defined inSection 4. Hence, in
order to keep theK particles which best approximate the exact belief’s value, an exact beliefupdate
is performed and then theK particles which minimize the weighted sum of distance measures, where
distance is defined as in Definition 1, are kept to approximate the exact belief. This procedure is
described in Algorithm 2.

5.2 Online Planning

As discussed above, standard offline or online POMDP solvers can be used to optimize the choice
of action in the BAPOMDP model. Online POMDP solvers (Paquet et al., 2005;Ross et al., 2008c)
have a clear advantage over offline finite POMDP solvers (Pineau et al., 2003; Spaan and Vlassis,
2005; Smith and Simmons, 2004) in the context of the BAPOMDP as they can be applied directly
in infinite POMDPs, provided we have an efficient way to compute beliefs. Hence online POMDP
solvers can be applied directly to solve the BAPOMDP without using the finite POMDP representa-
tion presented in Section 4. Another advantage of the online approach is that by planning from the
current belief, for any finite planning horizont, one can compute exactly the optimal value func-
tion, as only a finite number of beliefs can be reached over that finite planning horizon. While the
number of reachable beliefs is exponential in the horizon, often only a smallsubset is most relevant
for obtaining a good estimate of the value function. Recent online algorithms (Ross et al., 2008c)
have leveraged this by developing several heuristics for focusing computations on only the most
important reachable beliefs to obtain a good estimate quickly.

Since our focus is not on developing new online planning algorithms, we hereby simply present
a simple online lookahead search algorithm that performs dynamic programmingover all the beliefs

8. TheL1 distance between two beliefsb andb′, denoted||b−b′||1, is defined as∑σ∈S′ |b(σ)−b′(σ)|.
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reachable within some fixed finite planning horizon from the current belief.The action with highest
return over that finite horizon is executed and then planning is conducted again on the next belief.

To further limit the complexity of the online planning algorithm, we used the approximate be-
lief monitoring methods detailed above. The detailed procedure is provided in Algorithm 3. This
algorithm takes as input:b is the current belief of the agent,D the desired depth of the search, and
K the number of particles to use to compute the next belief states. At the end of thisprocedure, the
agent executes actionbestAin the environment and restarts this procedure with its next belief. Note
here that an approximate value functionV̂ can be used to approximate the long term return obtained
by the optimal policy from the fringe beliefs. For efficiency reasons, we simply definedV̂(b) to be
the maximum immediate reward in beliefb throughout our experiments. The overall complexity of
this planning approach isO((|A||Z|)DCb), whereCb is the complexity of updating the belief.

1: function V(b,d,K)
2: if d = 0 then
3: return V̂(b)
4: end if
5: maxQ←−∞
6: for all a∈ A do
7: q← ∑(s,φ,ψ)∈S′b

b(s,φ,ψ)R(s,a)
8: for all z∈ Z do
9: b′← τ̂(b,a,z,K)

10: q← q+ γPr(z|b,a)V(b′,d−1,K)
11: end for
12: if q> maxQthen
13: maxQ← q
14: maxA← a
15: end if
16: end for
17: if d = D then
18: bestA←maxA
19: end if
20: return maxQ

Algorithm 3: Online Planning in the BAPOMDP.

In general, planning via forward search can be improved by using an accurate simulator, a
good exploration policy, and a good heuristic function. For example, any offline POMDP solution
can be used at the leaves of the lookahead search to improve search quality (Ross et al., 2008c).
Additionally, more efficient online planning algorithms presented in Ross et al.(2008c) could be
used provided one can compute an informative upper bound and lower bound on the value function
of the BAPOMDP.

6. Empirical Evaluation

The main focus of this paper is on the definition of the Bayes-Adaptive POMDP model, and ex-
amination of its theoretical properties. Nonetheless it is useful to consider experiments on a few
sample domains to verify that the algorithms outlined in Section 5 produce reasonable results. We
begin by comparing the three different belief approximations introduced above. To do so, we use
a simple onlined-step lookahead search, and compare the overall expected return andmodel ac-
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curacy in three different problems: the well-known Tiger domain (Kaelblinget al., 1998), a new
domain called Follow which simulates simple human-robot interactions and finally a standard robot
planning domain known as RockSample (Smith and Simmons, 2004).

GivenTsas′ andOs′az the exact probabilities of the (unknown) POMDP, the model accuracy is
measured in terms of the weighted sum of L1-distance, denotedWL1, between the exact model and
the probable models in a belief stateb:

WL1(b) = ∑(s,φ,ψ)∈S′b
b(s,φ,ψ)L1(φ,ψ)

L1(φ,ψ) = ∑a∈A ∑s′∈S

[

∑s∈S|Tsas′
φ −Tsas′ |+∑z∈Z |Os′az

ψ −Os′az|
]

6.1 Tiger

The Tiger problem (Kaelbling et al., 1998) is a 2-state POMDP,S= {tiger_le f t, tiger_right}, de-
scribing the position of the tiger. The tiger is assumed to be behind a door; its location is inferred
through a noisy observation,Z= {hear_right,hear_le f t}. The agent has to select whether to open a
door (preferably such as to avoid the tiger), or listen for further information,
A= {open_le f t,open_right, listen}. We consider the case where the transition and reward parame-
ters are known, but the observation probabilities are not. Hence, there are four unknown parameters:
OLl , OLr , ORl, ORr (OLr stands for Pr(z= hear_right|s= tiger_le f t,a= listen)). We define the ob-
servation count vector,ψ = (ψLl ,ψLr ,ψRl,ψRr), and consider a prior ofψ0 = (5,3,3,5), which
specifies an expected sensor accuracy of 62.5% (instead of the correct 85%) in both states. Each
simulation consists of 100 episodes. Episodes terminate when the agent opens a door, at which point
the POMDP state (i.e., tiger’s position) is reset, but the distribution over countvectors is carried over
to the next episode.

Figure 1 shows how the average return and model accuracy evolve over the 100 episodes (results
are averaged over 1000 simulations), using an online 3-step lookahead search with varying belief
approximations and parameters. Returns obtained by planning directly with theprior and exact
model (without learning) are shown for comparison. Model accuracy ismeasured on the initial
belief of each episode. Figure 1 also compares the average planning time per action taken by
each approach. We observe from these figures that the results for theMost Probable and Weighted
Distance approximations are similar and perform well even with few particles.On the other hand,
the performance of the Monte-Carlo belief tracking is much weaker, even using many more particles
(64). The Most Probable approach yields slightly more efficient planningtimes than the Weighted
Distance approximation.

6.2 Follow

We also consider a new POMDP domain, called Follow, inspired by an interactive human-robot task.
It is often the case that such domains are particularly subject to parameter uncertainty (due to the dif-
ficulty in modeling human behavior), thus this environment motivates the utility of Bayes-Adaptive
POMDP in a very practical way. The goal of the Follow task is for a robot tocontinuously follow
one of two individuals in a 2D open area. The two subjects have differentmotion behavior, requiring
the robot to use a different policy for each. At every episode, the target person is selected randomly
with Pr = 0.5 (and the other is not present). The person’s identity is not observable(except through
their motion). The state space has two features: a binary variable indicating which person is being
followed, and a position variable indicating the person’s position relative to the robot (5×5 square
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Figure 1: Tiger: Empirical return (top left), belief estimation error (top right), and planning time
(bottom), for different belief tracking approximation.

grid with the robot always at the center). Initially, the robot and person are at the same position. Both
the robot and the person can perform five motion actions{NoAction,North,East,South,West}. The
person follows a fixed stochastic policy (stationary over space and time), but the parameters of this
behavior are unknown. The robot perceives observations indicatingthe person’s position relative to
the robot:{Same,North,East,South,West,Unseen}. The robot perceives the correct observation
Pr = 0.8 andUnseenwith Pr = 0.2. The rewardR= +1 if the robot and person are at the same
position (central grid cell),R= 0 if the person is one cell away from the robot, andR= −1 if the
person is two cells away. The task terminates if the person reaches a distance of 3 cells away from
the robot, also causing a reward of -20. We use a discount factor of 0.9.

When formulating the BAPOMDP, the robot’s motion model (deterministic), the observation
probabilities, and the rewards are all assumed to be known. However we consider the case where
each person’s motion model is unknown. We maintain a separate count vector for each person,
representing the number of times they move in each direction, that is,φ1 = (φ1

NA,φ1
N,φ1

E,φ1
S,φ1

W),
φ2 = (φ2

NA,φ2
N,φ2

E,φ2
S,φ2

W). We assume a priorφ1
0 = (2,3,1,2,2) for person 1 andφ2

0 = (2,1,3,2,2)
for person 2, while in reality person 1 moves with probabilitiesPr = (0.3,0.4,0.2,0.05,0.05) and
person 2 withPr = (0.1,0.05,0.8,0.03,0.02). We run 200 simulations, each consisting of 100
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episodes (of at most 10 time steps). The count vectors’ distributions are reset after every simulation,
and the target person is reset after every episode. We use a 2-step lookahead search for planning in
the BAPOMDP.

Figure 2 shows how the average return and model accuracy evolve over the 100 episodes (av-
eraged over the 200 simulations) with different belief approximations. Figure 2 also compares
the planning time taken by each approach. We observe from these figuresthat the results for the
Weighted Distance approximations are much better both in terms of return and model accuracy, even
with fewer particles (16). Monte-Carlo fails at providing any improvement over the prior model,
which indicates it would require much more particles. Running Weighted Distance with 16 particles
require less time than both Monte-Carlo and Most Probable with 64 particles, showing that it can
be more time efficient for the performance it provides in complex environment.
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Figure 2: Follow: Empirical return (top left), belief estimation error (top right), and planning time
(bottom), for different belief tracking approximation.

6.3 RockSample

To test our algorithm against problems with a larger number of states, we consider the RockSample
problem (Smith and Simmons, 2004). In this domain, a robot is on ann×n square board, with rocks
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on some of the cells. Each rock has an unknown binary quality (good or bad). The goal of the robot
is to gather samples of the good rocks. Sampling a good rock yields high reward (+10), in contrast
to sampling a bad rock (-10). However a sample can only be acquired whenthe robot is in the same
cell as the rock. The number of rocks and their respective positions arefixed and known, while their
qualities are fixed but unknown. A state is defined by the position of the robot on the board and the
quality of all the rocks. With ann×n board andk rocks, the number of states is thenn22k. Most
results below assumen = 3 andk = 2, which makes 36 states. The robot can choose between 4
(deterministic) motion actions to move to neighboring cells, the Sample action, and a Sensor action
for each rock, so there arek+5 actions in general. The robot is able to acquire information on the
quality of each rock by using the corresponding sensor action. The sensor returns eitherGOOD or
BAD, according to the quality of the rock. The sensor can be used when the robot is away from the
rock, but the accuracy depends on the distanced between the robot and the rock. As in the original
problem, the accuracyη of the sensor is given byη = 2−d/d0.

6.3.1 INFLUENCE OFLARGE NUMBER OF STATES

We consider the case where transition probabilities are known, and the agent must learn its obser-
vation function. The prior knowledge over the structure of the observation function is as follows:

• the probability distribution over observations after performing actionCHECKi in states de-
pends only on the distance between the robot and the rocki;

• at a given distanced, the probability of observingGOODwhen the rock is a good one is equal
to the probability of observingBAD when the rock is a bad one. This means that for each
distanced, the robot’s sensor has a probability to give incorrect observations, which doesn’t
depend of the quality of the rock.

These two assumptions seem reasonable in practice, and allow the robot to learn a model efficiently
without having to try allCHECK actions in all states.

We begin by comparing performance of the BAPOMDP framework with different belief ap-
proximations. For the belief tracking, we focus on the Most Probable and Weighted Distance Min-
imization approximations, knowing that the Monte Carlo has given poor resultsin the two smaller
domains. Each simulation consists of 100 episodes, and the results are averaged over 100 simula-
tions.

As we can see in Figure 3(left), the Most Probable approximation outperforms Weighted Dis-
tance Minimization; in fact, after only 50 iterations, it reaches the same level ofperformance as a
robot that knows the true model. Figure 3(right) sheds further light on thisissue, by showing, for
each episode, the maximumL1 distance between the estimated beliefb̂(s) = ∑ψ,φ b(s,φ,ψ), and the
correct beliefb(s) (assuming the model is knowna priori). We see that this distance decreases for
both approximations, and that it reaches values close to 0 after 50 episodes for the Most Probable ap-
proximation. This suggests that the robot has reached a point where it knows its model well enough
to have the same belief over the physical states as a robot who would know the true model. Note
that the error in belief estimate is calculated over the trajectories; it is possible that the estimated
model is wrong in parts of the beliefs which are not visited under the current (learned) policy.

To further verify the scalability of our approach, we consider larger versions of the RockSample
domain in Figure 4. Recall that fork rocks and ann×n board, the domain has state space|S| =
n22k and action space|A| = 5+ k. For this experiment, and all subsequent ones, belief tracking
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Figure 3: RockSample: Empirical return (left) and belief estimation error (right) for different belief
tracking approximation.

in the BAPOMDP is done with the Most Probable approximation (withK = 16). As expected,
the computational time for planning grows quickly withn andk. Better solutions could likely be
obtained with appropriate use of heuristics in the forward search planner(Ross et al., 2008c).
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Figure 4: RockSample: Computational time for different values ofk andn. All results are computed
with K = 16 and a depth=3 planning horizon.

6.3.2 INFLUENCE OF THEPRIORS

The choice of prior plays an important role in Bayesian Learning. As explained above, in the Rock-
Sample domain we have constrained the structure of the observation probability model structural
assumptions in the prior. For all results presented above, we used a priormade of 4φ-vectors with
probability 1

4 each. Each of those vectorsφi is made of coefficients(φi j ), whereφi j is the probability
that the sensor will give a correct observation at distancej. For each of the 4 vectorsφi , we sample
the coefficientsφi j from an uniform distribution between 0.45 and 0.95. We adopt this approach
for a number of reasons. First, this prior is very general, in assuming thatthe sensor’s probability
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to make a mistake is uniformly distributed between 0.05 and 0.55, at every distance d. Second,
by sampling a new prior for every simulation, we ensure that the results do not depend closely on
inadvertent similarities between our prior and the correct model.

We now consider two other forms of prior. First, we consider the case where the coefficients
φi j are not sampled uniformly fromU[0.45,0.95], but rather fromU[φ∗j±ε], whereφ∗j is the value of
the true model (that is, the probability that the true sensor gives a true observation at distancej).
We consider performance for various levels of noise, 0≤ ε ≤ 0.25. This experiment allows us to
measure the influence of prior uncertainty on the performances of our algorithm. The results in
Figure 5 show that the BAPOMDP agent performs well for various levels of initial uncertainty over
the model. As expected, the fact that all the priors haveφi j coefficients centered around the true
valueφ∗j carries in itself substantial information, in many cases enough for the robotto perform very
well from the first episode (note that they-axis in Fig. 5 is different than that in Fig. 3). Furthermore,
we observe that the noise has very little influence on the performances of the robot: for all values of
ε, the empirical return is above 6.3 after only 30 episodes.

 5.5

 5.6

 5.7

 5.8

 5.9

 6

 6.1

 6.2

 6.3

 6.4

 6.5

 6.6

 0  10  20  30  40  50  60  70  80  90  100

R
et

ur
n

Episodes

ε = 0
ε = 0.05
ε = 0.10
ε = 0.15
ε = 0.20
ε = 0.25

True model
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80  90  100

B
el

ie
f e

rr
or

 (
L1

)

Episodes

ε = 0
ε = 0.05
ε = 0.10
ε = 0.15
ε = 0.20
ε = 0.25

Figure 5: Performance of BAPOMDP with centered uniform priors in RockSample domain, using
the Most Probably (K=16) belief tracking approximation. Empirical return (left). Belief
state tracking error (right).

Second, we consider the case where there is only oneφ-vector, which has probability one. This
vector has coefficientsφ j , such that for allj, φ j =

k−1
k , for different values ofk. This represents a

beta distribution of parameters(1,k), where 1 is the count of wrong observations, andk the count
of correct observations. The results presented in Figure 6 show that for all values ofk, the rewards
converge towards the optimal value within 100 episodes. We see that for high values ofk, the
robot needs more time to converge towards optimal rewards. Indeed, those priors have a large total
count (k+1), which means their variance is small. Thus, they need more time to correct themselves
towards the true model. In particular, the(1,16) is very optimistic (it considers that the sensor
only makes an error with probability117), which causes the robot to make mistakes during the first
experiments, thus earning poor rewards at the beginning, and needing about 80 episodes to learn a
sufficiently good model to achieve near-optimal performance. The right-side graph clearly shows
how the magnitude of the initialk impacts the error in the belief over physical states (indicating that
the robot doesn’t know the quality of the rocks as well as if it knew the correct model). The error in
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Figure 6: Performance of BAPOMDP with Beta priors in RockSample domain, using the Most
Probable (K=16) belief tracking approximation. Empirical return (left). Belief state track-
ing error (right).

belief state tracking is significantly reduced after about 80 iterations, confirming that our algorithm
is able to overcome poor priors, even those with high initial confidence.

Finally, we consider the case where the true underlying POMDP model is changed such that the
sensor has a constant probabilityε of making mistakes for all distances; the prior is sampled as for
the results of Figure 3. This makes the situation harder for the robot, because it increases its sensor’s
overall probability of making mistakes, including at distance zero (i.e., when the robot is on the same
cell as the rock). The empirical results presented in Figure 7 show a decrease in the empirical return
asε increases. Similarly, as shown in the right graph, the learning performance suffers with higher
values ofε. This is not surprising since a higherε indicates that the robot’sCHECKs are more prone
to error, which makes it more difficult for the robot to improve its knowledge about its physical
states, and thus about its model. In fact, it is easy to verify that the optimal return (assuming a fully
known model) is lower for the noisier model. In general, in domains where the observations are
noisy or aliased, it is difficult for the agent to learn a good model, as well asperform well (unless
the observations are not necessary for good performance).

7. Related Work

A few recent approaches have tackled the problem of joint planning andlearning under partial (state
and model) observability using a Bayesian framework. The work of Poupart and Vlassis (2008) is
probably closest to the BAPOMDP outlined here. Using a similar Bayesian representation of model
uncertainty, they proposed an extension of the Beetle algorithm (Poupartet al., 2006) (original
designed for fully observable domains) to compute an approximate solution for BAPOMDP-type
problems. Their work is presented in the context of factored representations, but the model learning
is done using similar Bayesian mechanisms, namely by updating a posterior represented by a mix-
ture of Dirichlet distributions. They outline approximation methods to maintain a compact belief
set that are similar to the Most Probably and Monte-Carlo methods outlined in Section 5.1 above.
Presumably our Weighted Distance minimization technique could be extended to their factored rep-
resentation, assuming one can compute the distance metric. Finally, they propose an offline planning
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Figure 7: Performance of BAPOMDP with varying observation models in RockSample domain.
Empirical return (left). Belief error (right).

algorithm, similar to the literature on point-based POMDP solvers, to find a policy. However we
are not aware of any empirical validation with this approach, thus scalability and expressivity in
experimental domains remains to be determined.

Jaulmes et al. (2005) have for their part considered active learning in partially observable do-
mains where information gathering actions are provided by oracles that reveal the underlying state.
The key assumption of this approach, which is not used in other model-freeapproaches, concerns
the existence of this oracle (or human) which is able to correctly identify the state following each
transition. This makes it much easier to know how to update the prior. In the samevein than
Jaulmes and colleagues, Doshi et al. (2008) developed an approach for active learning in POMDPs
that can robustly determine a near-optimal policy. To achieve that, they introduced meta-queries
(questions about action) and a risk-averse action selection criterion thatallows agents to behave ro-
bustly even with uncertain knowledge of the POMDP model. Finally, Doshi-Velez (2010) proposed
a Bayesian learning framework for the case of POMDPs where the numberof states is not knowna
priori , thus allowing the number of states to grow gradually as the agent explores the world, while
simultaneously updating a posterior over the parameters.

The work on Universal Artificial Intelligence (Hutter, 2005) presents an interesting alternative
to the framework of BAPOMDPs. It tackles a similar problem, namely sequentialdecision-making
under (general) uncertainty. But Hutter’s AIXI framework is more general, in that it allows the
model to be sampled from any computable distribution. The learning problem is constrained by
placing an Occam’s razor prior (measured by Kolmogorov complexity) overthe space of models.
The main drawback is that inference in this framework is incomputable, thoughan algorithm is
presented for computing time/space-bounded solutions. Further development of a general purpose
AIXI learning/planning algorithm would be necessary to allow a direct comparison between AIXI
and BAPOMDPs on practical problems. Recent results in Monte-Carlo Planning provide a good
basis for this (Silver and Veness, 2010; Veness et al., 2011).

A number of useful theoretical results have also been published recently.For the specific case
of exploration in reinforcement learning, Asmuth et al. (2009) presenteda fully Bayesian analysis
of the performance of a sampling approach. Subsequently, Kolter and Ng(2009) clarified the rela-
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tion between Bayesian and PAC-MDP approaches and presented a simple algorithm for efficiently
achieving near-Bayesian exploration.

Finally, it is worth emphasizing that Bayesian approaches have also been investigated in the
control literature. The problem of optimal control under uncertain model parameters was originally
introduced by Feldbaum (1961), as the theory of dual control, also sometimes referred to as adap-
tive dual control. Extensions of this theory have been developed for time-varying systems (Filatov
and Unbehauen, 2000). Several authors have studied this problem for different kinds of dynamical
systems : linear time invariant systems under partial observability (Rusnak, 1995), linear time vary-
ing Gaussian models under partial observability (Ravikanth et al., 1992), nonlinear systems with
full observability (Zane, 1992), and more recently a non linear systems under partial observability
(Greenfield and Brockwell, 2003). All this work is targeted towards specific classes of continu-
ous systems, and we are not aware of similar work in the control literature for discrete (or hybrid)
systems.

8. Conclusion

The problem of sequential decision-making under model uncertainty arises in many practical ap-
plications of AI and decision systems. Developing effective models and algorithms to handle these
problems under realistic conditions—including stochasticity, partial state observability, and model
inaccuracy—is imperative if we hope to deploy robots and other autonomousagents in real-world
situations.

This paper focuses in particular on the problem of simultaneous learning and decision-making in
dynamic environments under partial model and state uncertainty. We adopt amodel-based Bayesian
reinforcement learning framework, which allows us to explicitly target the exploration-exploitation
problem in a coherent mathematical framework. Our work is a direct extension of previous results
on model-based Bayesian reinforcement learning in fully observable domains.

The main contributions of the paper pertains to the development of the Bayes-Adaptive POMDP
model, and analysis of its theoretical properties. This work addresses a number of interesting ques-
tions, including:

1. defining an appropriate model for POMDP parameter uncertainty,

2. approximating this model while maintaining performance guarantees,

3. performing tractable belief updating, and

4. optimizing action sequences given a posterior over state and model uncertainty.

From the theoretical analysis, we are able to derive simple algorithms for belief tracking and
(near-)optimal decision-making in this model. We illustrate performance of these algorithms in a
collection of synthetic POMDP domains. Results in the Follow problem showed that our approach
is able to learn the motion patterns of two (simulated) individuals. This suggests interesting ap-
plications in human-robot interaction, where we often lack good models of human behavior and
where it is imperative that an agent be able to learn quickly, lest the human user lose interest (this
is in contrast to robot navigation tasks, for which we often have access tomore precise dynamical
models and/or high-fidelity simulators). For their part, results of RockSample problem shows how
one should take into account prior knowledge on agent’s sensors whenthis knowledge is available.
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While the BAPOMDP model provides a rich model for sequential decision-making under uncer-
tainty, it has a number of important limitations. First, the model and theoretical analysis are limited
to discrete domains. It is worth noting however that the approximate algorithms extend quite eas-
ily to the continuous case (Ross et al., 2008b), at least for some families of dynamical systems.
Other related references for the continuous case are available in the control literature, as described
in Section 7.

Another limitation is the fact that the model requires specification of a prior. This is standard in
the Bayesian RL framework. The main concern is to ensure that the prior assigns some weight to
the correct model. Our empirical evaluation shows good performance fora range of priors; though
the issue of choosing good priors in large domains remains a challenge in general. Our empirical
results also confirm standard Bayesian intuition, whereby the influence ofthe prior is particularly
important for any inference and decision-making performed when only a small amount of data has
been observed, but the influence becomes negligible as large amounts of data are acquired.

As a word of caution, problems may arise in cases where Bayesian RL is used to infer both tran-
sition and observation probabilities simultaneously, while the rewards are notexplicitly perceived
through the observations (even if the rewards are knowna priori). In this challenging setting, the
Bayes-Adaptive POMDP framework as outlined above might converge to an incorrect model if the
initial priors on the transition and observation model are non-informative. This is mainly due to
the fact that many possible parameters may correctly explain the observed action-observation se-
quences. While the agent is able to predict observations correctly, this leads to poor prediction
of rewards and thus possibly sub-optimal long-term rewards. Howeverif the rewards are observ-
able, and their probabilities taken into account in the belief update, such problems do not arise,
in the sense that the agent learns an equivalent model that correctly explains the observed action-
observation-reward sequence and recovers a good policy for the unknown POMDP model. In the
latter case, where rewards are observable, the framework presentedin this paper can be used with
only minor modifications to also learn the reward function.

Finally, it is worth pointing out that Bayesian RL methods in general have notbeen deployed in
real-world domains yet. We hope that the work presented here will motivate further investigation of
practical issues pertaining to the application and deployment of this class of learning approaches.
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Appendix A. Theorems and Proofs

This appendix presents the proofs of the theorems presented throughout this paper. Theorems 1 and
2 are presented first, then some useful lemmas, followed by the proofs of the remaining Theorems.
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Theorem 1 Let (S′,A,Z,T ′,O′,R′,γ) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,O,R,γ). If S is finite, then at any time t, the set S′b′t = {σ ∈ S′|b′t(σ) > 0} has size

|S′b′t | ≤ |S|
t+1.

Proof Proof by induction. Whent = 0,b′0(s,φ,ψ)> 0 only if φ = φ0 andψ = ψ0. Hence|S′b′0| ≤ |S|.
For the general case, assume that|S′b′t−1

| ≤ |S|t . From the definitions of the belief update function,

b′t(s
′,φ′,ψ′) > 0 iff ∃(s,φ,ψ) such thatb′t−1(s,φ,ψ) > 0, φ′ = φ+ δa

ss′ andψ′ = ψ+ δa
s′z. Hence, a

particular(s,φ,ψ) such thatb′t−1(s,φ,ψ) > 0 yields non-zero probabilities to at most|S| different
states inb′t . Since|S′b′t−1

| ≤ |S|t by assumption, then if we generate|S| different probable states inb′t ,

for each probable state inS′bt−1
it follows that|S′b′t | ≤ |S|

t+1.

Theorem 2 For any horizon t, there exists a finite setΓt of functions S′→ R, such that V∗t (b) =
maxα∈Γt ∑σ∈S′ α(σ)b(σ).

Proof Proof by induction. This holds true for horizont = 1, sinceV∗1 (b) =
maxa∈A ∑(s,φ,ψ)b(s,φ,ψ)R(s,a). Hence by definingΓ1 = {αa|αa(s,φ,ψ) = R(s,a),a∈ A}, V∗1 (b) =
maxα∈Γ1 ∑σ∈S′ b(σ)α(σ). By induction, we assume that there exists a setΓt such thatV∗t (b) =
maxα∈Γt ∑σ∈S′ b(σ)α(σ).
Now V∗t+1(b) = maxa∈A

[

∑(s,φ,ψ)b(s,φ,ψ)R(s,a)+∑z∈Z Pr(z|b,a)V∗t (baz)
]

. Hence:

V∗t+1(b) = maxa∈A
[

∑(s,φ,ψ)b(s,φ,ψ)R(s,a)+∑z∈Z Pr(z|b,a)maxα∈Γt ∑σ∈S′ b
az(σ)α(σ)

]

= maxa∈A
[

∑(s,φ,ψ)b(s,φ,ψ)R(s,a)+∑z∈Z maxα∈Γt ∑σ∈S′ Pr(z|b,a)baz(σ)α(σ)
]

= maxa∈A
[

∑(s,φ,ψ)b(s,φ,ψ)R(s,a)+
∑z∈Z maxα∈Γt ∑(s,φ,ψ)∈S′ ∑s′∈Sb(s,φ,ψ)Tsas′

φ Os′az
ψ α(s′,U(φ,s,a,s′),U(ψ,s′,a,z))

]

.

Thus if we define:

Γt+1 = {αa, f |αa, f (s,φ,ψ) = R(s,a)+
∑z∈Z ∑s′∈STsas′

φ Os′az
ψ f (z)(s′,U(φ,s,a,s′),U(ψ,s′,a,z)),a∈ A, f ∈ [Z→ Γt ]},

thenV∗t+1(b) = maxα∈Γt+1 ∑σ∈S′ b(σ)α(σ) andΓt+1 is finite since|Γt+1|= |A||Γt ||Z|, which is finite
by assumptions thatA, Z andΓt are all finite.

For some of the following theorems, lemmas and proofs, we will sometime denote theDirich-
let count update operatorU, as defined for the BAPOMDP, as a vector addition:φ′ = φ+ δa

ss′ =
U(φ,s,a,s′), that is,δa

ss′ is a vector full of zeros, with a 1 for the elementφa
ss′ .

Lemma 1 For any t≥ 2, any α-vector αt ∈ Γt can be expressed asαa,α′
t (s,φ,ψ) = R(s,a) +

γ∑z∈Z ∑s∈S′ T
sas′

φ Os′az
ψ α′(z)(s′,φ+δa

ss′ ,ψ+δa
s′z) for some a∈A, andα′ defining a mapping Z→Γt−1.

Proof Follows from proof of theorem 2.

Lemma 2 Given any a,b,c,d ∈ R, ab−cd= (a−c)(b+d)+(a+c)(b−d)
2 .
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Proof Follows from direct computation.

Lemma 3 Given anyφ,φ′ ∈ T , ψ,ψ′ ∈ O, then for all s∈ S, a∈ A, we have that

∑s′∈S∑z∈Z

∣

∣

∣

∣

φ′a
ss′ψ
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N sa
φ′ N
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∣
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≤ Dsa
S (φ′,φ)+sups′∈SDs′a

Z (ψ′,ψ).

Proof Using lemma 2, we have that:
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Lemma 4 Given anyφ,φ′,∆ ∈ T , then for all s∈ S, a∈ A,

Dsa
S (φ+∆,φ′+∆)≤ Dsa
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N sa
∆ (φa

ss′−φ′a
ss′ )+∆a

ss′ (N
sa

φ′ −N
sa

φ )

(N sa
φ +N sa

∆ )(N sa
φ′ +N

sa
∆ )

∣

∣

∣

∣

≤ ∑s′∈S

∣

∣

∣

∣

φa
ss′N

sa
φ′ −φ′a

ss′N
sa

φ

N sa
φ N sa

φ′

∣

∣

∣

∣

+
N sa

∆ [∑s′∈S|φa
ss′−φ′a

ss′ |]+
∣

∣

∣
N sa

φ′ −N
sa

φ

∣

∣

∣∑s′∈S∆a
ss′

(N sa
φ +N sa

∆ )(N sa
φ′ +N

sa
∆ )

= Dsa
S (φ,φ′)+

N sa
∆ [∑s′∈S|φa

ss′−φ′a
ss′ |]+N sa

∆

∣

∣

∣
N sa

φ′ −N
sa

φ

∣

∣

∣

(N sa
φ +N sa

∆ )(N sa
φ′ +N

sa
∆ )

≤ Dsa
S (φ,φ′)+ 2N sa

∆ ∑s′∈S|φa
ss′−φ′a

ss′ |
(N sa

φ +N sa
∆ )(N sa

φ′ +N
sa

∆ )
.
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Lemma 5 Given anyψ,ψ′,∆ ∈ O, then for all s∈ S, a∈ A,

Dsa
Z (ψ+∆,ψ′+∆)≤ Dsa

Z (ψ,ψ′)+ 2N sa
∆ ∑z∈Z |ψa

sz−ψ′asz|
(N sa

ψ +N sa
∆ )(N sa

ψ′ +N
sa

∆ )
.

Proof Same proof as for lemma 4, except that we sum overz∈ Z in this case.

Lemma 6 Given anyγ ∈ (0,1), thensupx γx/2x= 2
ln(γ−e) .

Proof We observe that whenx = 0, γx/2x = 0 and limx→∞ γx/2x = 0. Furthermore,γx/2 is mono-
tonically decreasing exponentially asx increases, whilex is monotonically increasing linearly asx
increases. Thus it is clear thatγx/2x will have a unique global maximum in(0,∞). We can find this
maximum by taking the derivative:

∂
∂x(γ

x/2x)

= (lnγ)γx/2x
2 + γx/2

= γx/2( (lnγ)x
2 +1).

Hence by solving when this is equal 0, we have:

γx/2( (lnγ)x
2 +1) = 0

⇔ (lnγ)x
2 +1= 0

⇔ x= −2
lnγ =−2logγ(e).

Hence we have that:
γx/2x
≤ −2γ− logγ(e) logγ(e)
= −2e−1 logγ(e)
= 2

ln(γ−e) .

Lemma 7 supα1∈Γ1,s∈S|α1(s,φ,ψ)−α1(s,φ′,ψ′)|= 0 for anyφ, φ′, ψ, ψ′.

Proof For anya∈ A, s∈ S, |αa
1(s,φ,ψ)−αa

1(s,φ
′,ψ′)|= |R(s,a)−R(s,a)|= 0.

Theorem 3 Given anyφ,φ′ ∈ T , ψ,ψ′ ∈ O andγ ∈ (0,1), then∀t:

sup
αt∈Γt ,s∈S

|αt(s,φ,ψ)−αt(s,φ′,ψ′)| ≤ 2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Dsa
S (φ,φ′)+Ds′a

Z (ψ,ψ′)+

4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +1)(N sa
φ′ +1) +

∑z∈Z|ψa
s′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

.
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Proof Using lemma 1, we have that:

|αa,α′
t (s,φ,ψ)−αa,α′

t (s,φ′,ψ′)|
=

∣

∣

∣

∣

R(s,a)+ γ∑s′∈S∑z∈Z
φa

ss′ψ
a
s′z

N sa
φ N s′a

ψ
α′(z)(s′,φ+δa

ss′ ,ψ+δa
s′z)

−R(s,a)− γ∑s′∈S∑z∈Z
φ′a

ss′ψ
′a
s′z

N sa
φ′ N

s′a
ψ′

α′(z)(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

∣

∣

∣

∣

= γ
∣

∣

∣

∣

∑s′∈S∑z∈Z

[

φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ
α′(z)(s′,φ+δa

ss′ ,ψ+δa
s′z)−

φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′

α′(z)(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

]∣

∣

∣

∣

= γ
∣

∣

∣

∣

∑s′∈S∑z∈Z

[

φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ
(α′(z)(s′,φ+δa

ss′ ,ψ+δa
s′z)−α′(z)(s′,φ′+δa

ss′ ,ψ
′+δa

s′z))

−
(

φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′
− φa

ss′ψ
a
s′z

N sa
φ N s′a

ψ

)

α′(z)(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

]∣

∣

∣

∣

≤ γ∑s′∈S∑z∈Z
φa

ss′ψ
a
s′z

N sa
φ N s′a

ψ

∣

∣α′(z)(s′,φ+δa
ss′ ,ψ+δa

s′z)−α′(z)(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

∣

∣

+γ∑s′∈S∑z∈Z

∣

∣

∣

∣

φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′
− φa

ss′ψ
a
s′z

N sa
φ N s′a

ψ

∣

∣

∣

∣

∣

∣α′(z)(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

∣

∣

≤ γ sup
s′∈S,z∈Z

∣

∣α′(z)(s′,φ+δa
ss′ ,ψ+δa

s′z)−α′(z)(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

∣

∣

+ γ||R||∞
1−γ ∑s′∈S∑z∈Z

∣

∣

∣

∣

φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′
− φa

ss′ψ
a
s′z

N sa
φ N s′a

ψ

∣

∣

∣

∣

≤ γ sup
s′∈S,z∈Z

∣

∣α′(z)(s′,φ+δa
ss′ ,ψ+δa

s′z)−α′(z)(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

∣

∣

+ γ||R||∞
1−γ

(

Dsa
S (φ′,φ)+sups′∈SDs′a

Z (ψ′,ψ)
)

.

The last inequality follows from lemma 3. Hence by taking the sup we get:

supαt∈Γt ,s∈S|αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γ sup

s,s′∈S,a∈A,z∈Z,αt−1∈Γt−1

∣

∣αt−1(s′,φ+δa
ss′ ,ψ+δa

s′z)−αt−1(s′,φ′+δa
ss′ ,ψ

′+δa
s′z)

∣

∣

+ γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)
)

.

We notice that this inequality defines a recurrence. By unfolding it up tot = 1 we get that:

supαt∈Γt ,s∈S|αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γt−1 sup

α1∈Γ1,s′∈S,∆∈T ,∆′∈O| ||∆||1=||∆′||1=(t−1)
|α1(s′,φ+∆,ψ+∆′)−α1(s′,φ′+∆,ψ′+∆′)|

+ γ||R||∞
1−γ ∑t−2

i=1 γi sup
s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

Dsa
S (φ′+∆,φ+∆)+Ds′a

Z (ψ′+∆′,ψ+∆′)
)

+ γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)
)

.
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Applying lemmas 7, 4 and 5 to the last term, we get that:

supαt∈Γt ,s∈S|αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γ||R||∞

1−γ ∑t−2
i=1 γi sup

s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)

+
2N sa

∆ ∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +N sa
∆ )(N sa

φ′ +N
sa

∆ )
+

2N s′a
∆′ ∑z∈Z |ψa

s′z−ψ′a
s′z|

(N s′a
ψ +N s′a

∆′ )(N
s′a

ψ′ +N
s′a

∆′ )

)

+ γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)
)

= γ||R||∞
1−γ ∑t−2

i=1 γi/2 sup
s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

γi/2Dsa
S (φ′,φ)+ γi/2Ds′a

Z (ψ′,ψ)

+
2γi/2N sa

∆ ∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +N sa
∆ )(N sa

φ′ +N
sa

∆ )
+

2γi/2N s′a
∆′ ∑z∈Z |ψa

s′z−ψ′a
s′z|

(N s′a
ψ +N s′a

∆′ )(N
s′a

ψ′ +N
s′a

∆′ )

)

+ γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)
)

.

Now we notice thatγi/2 ≤ γN sa
∆ /2 since||∆||1 = i, and similarlyγi/2 ≤ γN

sa
∆′ /2. Hence by applying

lemma 6, we get that:

supαt∈Γt ,s∈S|αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γ||R||∞

1−γ ∑t−2
i=1 γi/2 sup

s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)

+
4∑s′′∈S|φa

ss′′−φ′a
ss′′ |

ln(γ−e)(N sa
φ +N sa

∆ )(N sa
φ′ +N

sa
∆ )

+
4∑z∈Z |ψa

s′z−ψ′a
s′z|

ln(γ−e)(N s′a
ψ +N s′a

∆′ )(N
s′a

ψ′ +N
s′a

∆′ )

)

+ γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)
)

≤ γ||R||∞
1−γ ∑t−2

i=1 γi/2 sup
s,s′∈S,a∈A

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)+ 4∑s′′∈S|φa
ss′′−φ′a

ss′′ |
ln(γ−e)(N sa

φ +1)(N sa
φ′ +1)

+
4∑z∈Z |ψa

s′z−ψ′a
s′z|

ln(γ−e)(N s′a
ψ +1)(N s′a

ψ′ +1)

)

+ γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)
)

≤
(

∑t−2
i=0 γi/2

) γ||R||∞
1−γ sup

s,s′∈S,a∈A

[

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)

+ 4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +1)(N sa
φ′ +1) +

∑z∈Z |ψa
s′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

≤
(

∑∞
i=0 γi/2

) γ||R||∞
1−γ sup

s,s′∈S,a∈A

[

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)

+ 4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +1)(N sa
φ′ +1) +

∑z∈Z |ψa
s′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

=
1+
√γ

1−γ
γ||R||∞
1−γ sup

s,s′∈S,a∈A

[

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)+ 4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +1)(N sa
φ′ +1) +

∑z∈Z |ψa
s′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

≤ 2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Dsa
S (φ′,φ)+Ds′a

Z (ψ′,ψ)+ 4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ′a

ss′′ |
(N sa

φ +1)(N sa
φ′ +1) +

∑z∈Z |ψa
s′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

.

Lemma 8 Givenφ ∈ T , s∈ S, a∈ A, then for all∆ ∈ T ,
∑s′∈S|φa

ss′−(φ
a
ss′+∆a

ss′ )|
(N sa

φ +1)(N sa
φ +N sa

∆ +1) ≤
1

N sa
φ +1.
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Proof
∑s′∈S|φa

ss′−(φ
a
ss′+∆a

ss′ )|
(N sa

φ +1)(N sa
φ +N sa

∆ +1)

=
∑s′∈S∆a

ss′
(N sa

φ +1)(N sa
φ +N sa

∆ +1)

= 1
N sa

φ +1

(

N sa
∆

N sa
∆ +N sa

φ +1

)

.

The term N sa
∆

N sa
∆ +N sa

φ +1 is monotonically increasing and converge to 1 asN sa
∆ → ∞. Thus the lemma

follows.

Corollary 1 Givenε > 0, φ ∈ T , s∈ S, a∈ A, if N sa
φ > 1

ε − 1 then for all ∆ ∈ T we have that
∑s′∈S|φa

ss′−(φ
a
ss′+∆a

ss′ )|
(N sa

φ +1)(N sa
φ +N sa

∆ +1) < ε.

Proof According to lemma 8, we know that for all∆∈ T , we have that
∑s′∈S|φa

ss′−(φ
a
ss′+∆a

ss′ )|
(N sa

φ +1)(N sa
φ +N sa

∆ +1) ≤
1

N sa
φ +1.

Hence ifN sa
φ > 1

ε −1, then 1
N sa

φ +1 < ε.

Lemma 9 Givenψ ∈ O, s∈ S, a∈ A, then for all∆ ∈ O, ∑z∈Z |ψa
sz−(ψa

sz+∆a
sz)|

(N sa
ψ +1)(N sa

ψ +N sa
∆ +1) ≤

1
N sa

ψ +1.

Proof Same proof as lemma 8.

Corollary 2 Givenε > 0, ψ ∈ O, s∈ S, a∈ A, if N sa
ψ > 1

ε − 1 then for all ∆ ∈ O we have that
∑z∈Z |ψa

sz−(ψa
sz+∆a

sz)|
(N sa

ψ +1)(N sa
ψ +N sa

∆ +1) < ε

Proof Same proof as corollary 1, but using lemma 9 instead.

Theorem 4 Given anyε > 0 and(s,φ,ψ) ∈ S′ such that∃a∈ A,∃s′ ∈ S,N s′a
φ > Nε

S or N s′a
ψ > Nε

Z,

then∃(s,φ′,ψ′)∈S′ such that∀a∈A,∀s′ ∈S,N s′a
φ′ ≤Nε

S,N s′a
ψ′ ≤Nε

Z and|αt(s,φ,ψ)−αt(s,φ′,ψ′)|<
ε holds for all t andαt ∈ Γt .

Proof Consider an arbitraryε > 0. We first find a bound onN sa
φ andN sa

ψ such that any vector with

higher counts is withinε distance of another vector with lower counts. Let’s defineε′ = ε(1−γ)2

8γ||R||∞ and

ε′′ = ε(1−γ)2 ln(γ−e)
32γ||R||∞ . According to corollary 1, we have that for anyφ ∈ T such thatN sa

φ > 1
ε′′ −1,

then for allφ′ ∈ T such that there exists a∆ ∈ T whereφ′ = φ+∆, then
∑s′′∈S|φa

ss′′−φ′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1) < ε′′. Hence

we want to find anN such that givenφ ∈ T with N sa
φ > N, there exists aφ′ ∈ T such thatN sa

φ′ ≤N,
Dsa

S (φ,φ′) < ε′ and exists a∆ ∈ T such thatφ = φ′+∆. Let’s consider an arbitraryφ such that

N sa
φ > N. We can construct a new vectorφ′ as follows, for alls′ defineφ′ass′ =

⌊

Nφa
ss′

N sa
φ

⌋

and for all

othera′ 6= a,s′′ 6= s, defineφ′a′s′′s′ = φa′
s′′s′ for all s′. Clearly,φ′ ∈ T , such thatN−|S| ≤N sa

φ′ ≤N. More-

over, we have thatφ′a′s′s′′ ≤ φa′
s′s′′ for all s′,a′,s′′, and thus there exists a∆ ∈ T such thatφ = φ′+∆.

1765



ROSS, PINEAU , CHAIB -DRAA AND KREITMANN

Furthermore, from its construction, we know that∀s′,
∣

∣

∣

∣

φ′a
ss′

N sa
φ′
− φa

ss′
N sa

φ

∣

∣

∣

∣

≤ 1
N sa

φ′
. Hence it is clear from this

thatDsa
S (φ,φ′)≤ |S|

N−|S| . Thus, if we wantDsa
S (φ,φ′)< ε′, we just need to takeN > |S|(1+ε′)

ε′ . Since we

also wantN > 1
ε′′ −1, let’s just defineNS= max

(

|S|(1+ε′)
ε′ , 1

ε′′ −1
)

. NS= Nε
S, as defined in Section

4, will be our bound onN sa
φ such that, as we have just showed, for anyφ ∈ T such thatN sa

φ > NS,

we can find aφ′ ∈ T such thatN sa
φ′ ≤ NS, Dsa

S (φ,φ′)< ε′ and
∑s′′∈S|φa

ss′′−φ′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1) < ε′′. Similarly, since

we have a similar corollary (corollary 1) for the observation countsψ, we can proceed in the same

way and defineNZ = max
(

|Z|(1+ε′)
ε′ , 1

ε′′ −1
)

, such that for anyψ ∈ O such thatN sa
ψ > NZ, we can

find a ψ′ ∈ O such thatN sa
ψ′ ≤ NZ, Dsa

Z (ψ,ψ′) < ε′ and ∑z∈Z |ψa
sz−ψ′asz|

(N sa
ψ +1)(N sa

ψ′ +1) < ε′′. NZ = Nε
Z as we have

defined in Section 4.
Now letS̃= {(s,φ,ψ)∈S′|∀s′ ∈S,a∈A,Ns′a

φ ≤NS & Ns′a
ψ ≤NZ} and consider an arbitrary(s,φ,ψ)∈

S′. For anys′ ∈S, a∈A, such thatN s′a
φ >NS, there exists aφ′ ∈ T such thatN s′a

φ′ ≤NS, Ds′a
S (φ,φ′)<

ε′ and
∑s′′∈S|φa

s′s′′−φ′a
s′s′′ |

(N s′a
φ +1)(N s′a

φ′ +1)
< ε′′ (as we have just showed above). Thus let’s defineφ̃a

s′s′′ = φ′as′s′′ for all

s′′ ∈ S. For anys′ ∈ S, a∈ A, such thatN s′a
φ ≤ NS, just setφ̃a

s′s′′ = φa
s′s′′ , ∀s′′ ∈ S. Similarly, for any

s′ ∈ S, a∈ A, such thatN s′a
ψ > NZ, there exists aψ′ ∈ O such thatN s′a

ψ′ ≤ NZ, Ds′a
Z (ψ,ψ′) < ε′ and

∑z∈Z |ψa
s′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

< ε′′ (as we have just showed above). Thus let’s defineψ̃a
s′s′′ = ψ′as′s′′ for all s′′ ∈ S.

For anys′ ∈ S, a ∈ A, such thatN s′a
ψ ≤ NZ, just setψ̃a

s′s′′ = ψa
s′s′′ ∀s′′ ∈ S. Now it is clear from

this construction that(s, φ̃, ψ̃) ∈ S̃. By Theorem 3, for anyt, supαt∈Γt ,s∈S|αt(s,φ,ψ)−αt(s, φ̃, ψ̃)| ≤
2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Ds,a
S (φ, φ̃)+Ds′,a

Z (ψ, ψ̃)+ 4
ln(γ−e)

(

∑s′′∈S|φa
ss′′−φ̃a

ss′′ |
(N sa

φ +1)(N sa
φ̃ +1) +

∑z∈Z |ψa
s′z−ψ̃a

s′z|
(N s′a

ψ +1)(N s′a
ψ̃ +1)

)]

<

2γ||R||∞
(1−γ)2

[

ε′+ ε′+ 4
ln(γ−e) (ε

′′+ ε′′)
]

= ε.

Theorem 5 Given anyε > 0, (s,φ,ψ) ∈ S′ and αt ∈ Γt computed from the infinite BAPOMDP.
Let α̃t be theα-vector representing the same conditional plan asαt but computed with the finite
BAPOMDP(S̃ε,A,Z, T̃ε,Õε, R̃ε,γ), then|α̃t(Pε(s,φ,ψ))−αt(s,φ,ψ)|< ε

1−γ .

Proof Let (s,φ′,ψ′) = Pε(s,φ,ψ).

|α̃t(Pε(s,φ,ψ))−αt(s,φ,ψ)|
≤ |α̃t(s,φ′,ψ′)−αt(s,φ′,ψ′)|+ |αt(s,φ′,ψ′)−αt(s,φ,ψ)|
< |α̃t(s,φ′,ψ′)−αt(s,φ′,ψ′)|+ ε (by Theorem 4)
= |γ∑z∈Z ∑s′∈STsas′

φ′ Os′az
ψ′

[

α̃′(z)(Pε(s′,φ′+δa
ss′ ,ψ

′+δa
s′z))−α′(z)(s′,φ′+δa

ss′ ,ψ
′+δa

s′z)
]

|+ ε
≤ γ∑z∈Z ∑s′∈STsas′

φ′ Os′az
ψ′

∣

∣α̃′(z)(Pε(s′,φ′+δa
ss′ ,ψ

′+δa
s′z))−α′(z)(s′,φ′+δa

ss′ ,ψ
′+δa

s′z)
∣

∣+ ε
≤ γsupz∈Z,s′∈S

∣

∣α̃′(z)(Pε(s′,φ′+δa
ss′ ,ψ

′+δa
s′z))−α′(z)(s′,φ′+δa

ss′ ,ψ
′+δa

s′z)
∣

∣+ ε
≤ γsupαt−1∈Γt−1,(s′,φ′′,ψ′′)∈S′ |α̃t−1(Pε(s′,φ′′,ψ′′))−αt−1(s′,φ′′,ψ′′)|+ ε.

Thus, we have that:

supαt∈Γt ,σ∈S′ |α̃t(Pε(σ))−αt(σ)|
< γsupαt−1∈Γt−1,σ′∈S′ |α̃t−1(Pε(σ′))−αt−1(σ′)|+ ε.
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This defines a recurrence. By unfolding it up tot = 1, where∀σ ∈ S′, α̃1(Pε(σ)) = α1(σ), we get
that supαt∈Γt ,σ∈S′ |α̃t(Pε(σ))−αt(σ)|< ε∑t−2

i=0 γi . Hence for allt, this is lower than ε
1−γ .

Theorem 6 Given anyε > 0, and any horizon t, let̃πt be the optimal t-step policy computed from
the finite POMDP(S̃ε,A,Z, T̃ε,Õε, R̃ε,γ), then for any initial belief b the value of executing policy
π̃t in the BAPOMDP Ṽπt (b)≥V∗(b)−2 ε

1−γ .

Proof Pick any starting beliefb in the BAPOMDP. Letα∗ denote the optimal t-step condition
plan in the BAPOMDP forb: α∗ = argmaxα∈Γt ∑(s,φ,ψ)b(s,φ,ψ)α(s,φ,ψ), such that the value of
this optimal conditional plan is∑(s,φ,ψ)b(s,φ,ψ)α∗(s,φ,ψ) =V∗(b). Denoteα̃∗ the corresponding
α-vector representing the samet-step conditional plan in the finite POMDP approximation.

Now let α̃′ = argmax̃α∈Γ̃t
∑(s,φ,ψ)b(s,φ,ψ)α̃(Pε(s,φ,ψ)) be the optimalt-step conditional plan

in the finite POMDP approximation if we start in beliefb. This conditional plan represents exactly
what the policyπ̃t would do overt-steps starting inb. Denoteα′ the correspondingα-function in the
BAPOMDP representing the samet-step conditional plan. Then the value of executingπ̃t starting
in b in the BAPOMDP isVπ̃t (b) = ∑(s,φ,ψ)b(s,φ,ψ)α′(s,φ,ψ). Using Theorem 5, this value is lower
bounded as follows:

Vπ̃t (b)
= ∑(s,φ,ψ)b(s,φ,ψ)α′(s,φ,ψ)
≥ ∑(s,φ,ψ)b(s,φ,ψ)α̃′(Pε(s,φ,ψ))− ε

1−γ
≥ ∑(s,φ,ψ)b(s,φ,ψ)α̃∗(Pε(s,φ,ψ))− ε

1−γ
≥ ∑(s,φ,ψ)b(s,φ,ψ)α∗(Pε(s,φ,ψ))−2 ε

1−γ
= V∗(b)−2 ε

1−γ .
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