Learning Message-Passing Inference Machines for Structured Prediction

Stéphane Ross Daniel Munoz

Martial Hebert

J. Andrew Bagnell

The Robotics Institute, Carnegie Mellon University

stephaneross@cmu.edu, {dmunoz, hebert, dbagnell}@ri.cmu.edu

Abstract

Nearly every structured prediction problem in computer
vision requires approximate inference due to large and com-
plex dependencies among output labels. While graphical
models provide a clean separation between modeling and
inference, learning these models with approximate infer-
ence is not well understood. Furthermore, even if a good
model is learned, predictions are often inaccurate due to
approximations. In this work, instead of performing infer-
ence over a graphical model, we instead consider the in-
ference procedure as a composition of predictors. Specif-
ically, we focus on message-passing algorithms, such as
Belief Propagation, and show how they can be viewed as
procedures that sequentially predict label distributions at
each node over a graph. Given labeled graphs, we can then
train the sequence of predictors to output the correct label-
ings. The result no longer corresponds to a graphical model
but simply defines an inference procedure, with strong the-
oretical properties, that can be used to classify new graphs.
We demonstrate the scalability and efficacy of our approach
on 3D point cloud classification and 3D surface estimation
from single images.

1. Introduction

Probabilistic graphical models, such as Conditional Ran-
dom Fields (CRFs) [11], have proven to be a remarkably
successful tool for structured prediction that, in principle,
provide a clean separation between modeling and infer-
ence. However, exact inference for problems in computer
vision (e.g., Fig. 1) is often intractable due to a large num-
ber of dependent output variables (e.g., one for each (su-
per)pixel). In order to cope with this problem, inference
inevitably relies on approximate methods: Monte-Carlo,
loopy belief propagation, graph-cuts, and variational meth-
ods [16, 2, 23]. Unfortunately, learning these models with
approximate inference is not well understood [9, 6]. Addi-
tionally, it has been observed that it is important to tie the
graphical model to the specific approximate inference pro-
cedure used at test time to obtain better predictions [10, 22].

2737

Figure 1: Applications of structured prediction in computer
vision. Left: 3D surface layout estimation. Right: 3D point
cloud classification.

When the learned graphical model is tied to the inference
procedure, the graphical model is not necessarily a good
probabilistic model of the data but simply a parametrization
of the inference procedure that yields the best predictions
within the “class” of inference procedures considered. This
raises an important question: if the ultimate goal is to obtain
the best predictions, then why is the inference procedure op-
timized indirectly by learning a graphical model? Perhaps
it is possible to optimize the inference procedure more di-
rectly, without building an explicit probabilistic model over
the data.

Some recent approaches [4, 21] eschew the probabilistic
graphical model entirely with notable successes. However,
we would ideally like to have the best of both worlds: the
proven success of error-correcting iterative decoding meth-
ods along with a tight relationship between learning and in-
ference. To enable this combination, we propose an alter-
nate view of the approximate inference process as a long
sequence of computational modules to optimize [1] such
that the sequence results in correct predictions. We focus on
message-passing inference procedures, such as Belief Prop-
agation, which compute marginal distributions over out-
put variables by iteratively visiting all nodes in the graph
and passing messages to neighbors which consist of “cav-
ity marginals”, i.e., a series of marginals with the effect of
each neighbor removed. Message-passing inference can be
viewed as a function applied iteratively to each variable that
takes as input local observations/features and local compu-

tations on the graph (messages) and provides as output the
intermediate messages/marginals. Hence, such a procedure
can be trained directly by training a predictor which pre-
dicts a current variable’s marginal' given local features and
a subset of neighbors’ cavity marginals. By training such a
predictor, there is no need to have a probabilistic graphical
model of the data, and there need not be any probabilistic
model that corresponds to the computations performed by
the predictor. The inference procedure is instead thought of
as a black box function that is trained to yield correct pre-
dictions. This is analogous to many discriminative learning
methods; it may be easier to simply discriminate between
classes than build a generative probabilistic model of them.

There are a number of advantages to doing message-
passing inference as a sequence of predictions. Considering
different classes of predictors allows one to obtain entirely
different classes of inference procedures that perform differ-
ent approximations. The level of approximation and com-
putational complexity of the inference can be controlled in
part by considering more or less complex classes of predic-
tors. This allows one to naturally trade-off accuracy versus
speed of inference in real-time settings. Furthermore, in
contrast with most approaches to learning inference, we are
able to provide rigorous reduction-style guarantees [18] on
the performance of the resulting inference procedure.

Training such a predictor, however, is non-trivial as
the interdependencies in the sequence of predictions make
global optimization difficult. Building from success in deep
learning, a first key technique we use is to leverage in-
formation local to modules to aid learning [1]. Because
each module’s prediction in the sequence corresponds to
the computation of a particular variable’s marginal, we ex-
ploit this information and try to make these intermediate
inference steps match the ideal output in our training data
(i.e., a marginal with probability 1 to the correct class).
To provide good guarantees and performance in practice in
this non-i.i.d. setting (as predictions are interdependent),
we also leverage key iterative training methods developed
in prior work for imitation learning and structured predic-
tion [17, 18, 4]. These techniques allow us to iteratively
train probabilistic predictors that predict the ideal variable
marginals under the distribution of inputs the learned pre-
dictors induce during inference. Optionally, we may refine
performance using an optimization procedure such as back-
propagation through the sequence of predictions in order to
improve the overall objective (i.e., minimize loss of the final
marginals).

In the next section, we first review message-passing in-
ference for graphical models. We then present our approach
for training message-passing inference procedures in Sec.
3. In Sec. 4, we demonstrate the efficacy of our proposed

IFor lack of a better term, we will use marginal throughout to mean a
distribution over one variable’s labels.

2738

approach by demonstrating state-of-the-art results on a large
3D point cloud classification task as well as in estimating
geometry from a single image.

2. Graphical Models and Message-Passing

Graphical models provide a natural way of encoding
spatial dependencies and interactions between neighboring
sites (pixels, superpixels, segments, etc.) in many computer
vision applications such as scene labeling (Fig. 1). A graph-
ical model represents a joint (conditional) distribution over
labelings of each site (node), via a factor graph (a bipartite
graph between output variables and factors) defined by a set
of variable nodes (sites) V, a set of factor nodes (potentials)
F' and a set of edges F between them:

PY|X) o [] ésxs,p),
fEF

where X, Y are the vectors of all observed features and out-
put labels respectively, ¢ the features related to factor F
and y¢ the vector of labels for each node connected to fac-
tor F'. A typical graphical model will have node potentials
(factors connected to a single variable node) and pairwise
potentials (factors connected between 2 nodes). It is also
possible to consider higher order potentials by having a fac-
tor connecting many nodes (e.g., cluster/segment potentials
as in [14]). Training a graphical model is achieved by op-
timizing the potentials ¢; on an objective function (e.g.,
margin, pseudo-likelihood, etc.) defined over training data.
To classify a new scene, an (approximate) inference pro-
cedure estimates the most likely joint label assignment or
marginals over labels at each node.

Loopy Belief Propagation (BP) [16] is perhaps the
canonical message-passing algorithm for performing (ap-
proximate) inference in graphical models. Let N, be the set
of factors connected to variable v, N,/ the set of factors
connected to v except factor f, Ny the set of variables con-
nected to factor f and NV n ? the set of variables connected
to f except variable v. At a variable v € V, BP sends a
message m, ¢ to each factor f in N,:

mvf(yv)cx H mf’v(yv)7
freny”’

where m,(y,) denotes the value of the message for as-
signment y, to variable v. At a factor f € F, BP sends a
message m . to each variable v in Ny:

mfv(yv)(x Z d)f(y}‘amf) H mv’f(yi)’),
Y5lye =y v'eN;

where y} is an assignment to all variables v’ connected to f,
Y, is the particular assignment to v’ (in y}), and ¢y is the
potential function associated to factor f which depends on

y’f and potentially other observed features x ¢ (e.g., in the
CRF). Finally the marginal of variable v is obtained as:

Plv=y,) x H My (Yo).
fEN,

The messages in BP can be sent synchronously (i.e., all
messages over the graph are computed before they are sent
to their neighbors) or asynchronously (i.e., by sending the
message to the neighbor immediately). When proceed-
ing asynchronously, BP usually starts at a random variable
node, with messages initialized uniformly, and then pro-
ceeds iteratively through the factor graph by visiting vari-
ables and factors in a breath-first-search manner (forward
and then in backward/reverse order) several times or until
convergence. The final marginals at each variable are com-
puted using the last equation. Asynchronous message pass-
ing often allows faster convergence and methods such as
Residual BP [5] have been developed to achieve still faster
convergence by prioritizing the messages to compute.

2.1. Understanding Message Passing as
Sequential Probabilistic Classification

By definition of P(v = y,), the message m, s can be
interpreted as the marginal of variable v when the factor f
(and its influence) is removed from the graph. This is often
referred as the cavity method in statistical mechanics [3]
and m,, s are known as cavity marginals. By expanding the
definition of m,r, we can see that it may depend only on
the messages m, ;- sent by all variables v connected to v

by a factor [/ # f:

mvf(yw) X H

FrenNy vy =yo VEN”

(D
Hence the messages m,, ¢ leaving a variable v toward a fac-
tor f in BP can be thought as the classification of the cur-
rent variable v (marginal distribution over classes) using the
cavity marginals m, ;- sent by variables v’ connected to v
through a factor f' # f. In this view, BP is iteratively
classifying the variables in the graph by performing a se-
quence of classifications (marginals) for each message leav-
ing a variable. The final marginals P(v = y,,) are then ob-
tained by classifying v using all messages from all variables
v’ connected to v through some factor f € N,,.

An example of how BP unrolls to a sequence of interde-
pendent local classifications is shown in Fig. 2 for a sim-
ple graph. In this view, the job of the predictor is not only
to emulate the computation going on during BP at variable
nodes, but also emulate the computations going on at all
the factors connected to the variable which it is not send-
ing the message to, as shown in Fig. 3. During inference
BP effectively employs a probabilistic predictor that has the
form in Equation 1, where the inputs are the messages m/, f/

Yo b)) T mes ().

2739

Figure 2: Depiction of how BP unrolls into a sequence of
predictions for 3 passes on the graph on the left with 3 vari-
ables (A,B,C) and 3 factors (1,2,3), starting at A. Sequence
of predictions on the right, where e.g., Al denotes the pre-
diction (message) of A sent to factor 1, while the output (fi-
nal marginals) are in gray and denoted by the corresponding
variable letter. Input arrows indicate the previous outputs
that are used in the computation of each message.

Output Input
Output L
Prediction Message
Classifier Message ‘\/ - =
Classifier, > e

Input
&Message Input
Message 4

/
Message
\N g

(b)

Figure 3: Depiction of the computations that the predictor
represents in BP for (a) a message to a neighboring factor
and (b) the final marginal of a variable outputed by BP.

and local observed features /. Training graphical models
can be understood as training a message-passing algorithm
with a particular class of predictors defined by Equation 1,
which have as parameters the potential functions ¢ ;. Under
this general view, there is no reason to restrict attention to
only predictors of the form of Equation 1. We now have
the possibility of using different classes of predictors (e.g.,
Logistic Regression, Boosted Trees, Random Forests, etc.)
whose inductive bias may more efficiently represent inter-
actions between neighboring variables or in some cases be
more compact and faster to compute, which is important in
real-time settings.

Many other techniques for approximate inference have
been framed in message-passing form. Tree-Weighted BP
[23] and convergent variants follow a similar pattern to BP
as described above but change the specific form of messages
sent to provide stronger performance and convergence guar-
antees. These can also be interpreted as performing a se-
quence of probabilistic classifications, but using a different
form of predictors. The classical “mean-field” (and more
generally variational methods [15]) method is easily framed
as a simpler message passing strategy where, instead of

cavity marginals, algorithms pass around marginals or ex-
pected sufficient statistics which is usually more efficient
but obtains lower performance then cavity message passing
[15]. We also consider training such mean-field inference
approach in the experiments.

3. Learning Message-Passing Inference

Training the cavity marginals’ predictors in the deep in-
ference network described above remains a non-trivial task.
As we saw in Fig. 2, the sequence of predictions forms a
large network where a predictor is applied at each node in
this network, similarly to a deep neural network. In gen-
eral, minimizing the loss of the output of such a network
is difficult since it is a non-convex optimization problem,
because the outputs of previous classifications are used as
input for following classifications. However here there are
several differences that make this training an easier problem
than training general networks. First, the number of param-
eters is small as we assume that the same predictor is used
at every node in this large network. Additionally, we can
exploit local sources of information (i.e., the variables tar-
get labels) to train the “hidden layer” nodes of this network.
Because each node corresponds to the computation of a par-
ticular variable’s marginal, we can always try to make these
marginals match the ideal output in our training data (i.e., a
marginal with probability 1 to the correct class).

Hence our general strategy for optimizing the message-
passing procedure will be to first use the local information
to train a predictor (or sequence of predictors) that predicts
the ideal variable marginals (messages) under the distribu-
tion of inputs it encounters during the inference process. We
refer to this step as local training. For cases where we train
a differentiable predictor, we can use the local training pro-
cedure to obtain a good starting point, and seek to optimize
the global non-convex objective (i.e., minimize logistic loss
only on the final marginals) using a descent procedure (i.e.,
back-propagation through this large network). We refer to
this second step as global training. The local training step
is still non-trivial as it corresponds to a non-i.i.d. super-
vised learning problem, i.e., previous classifications in the
network influence the future inputs that the predictor is eval-
uated on. As all statistical learning approaches assume i.i.d.
data, it has been shown that typical supervised learning ap-
proaches have poor performance guarantees in this setting.
Fortunately, recent work [17, 18, 4] have presented itera-
tive training algorithms that can provide good guarantees.
We leverage these techniques below and present how these
techniques can be used in our setting.

3.1. Local Training for Synchronous Message-
Passing

In synchronous message-passing, messages from nodes
to their neighbors are only sent once all messages at each

forn =1to N do
Use hi.,—1 to perform synchronous message-passing
on training graphs up to pass n.
Get dataset D,, of inputs encountered at pass n, with
the ideal marginals as target.
Train h,, on D,, to minimize a loss (e.g., logistic).
end for
Return the sequence of predictors hq. .

2740

Algorithm 3.1: Forward Training Algorithm for Learning
Synchronous Message-Passing.

node have been computed. Our goal is to train a predictor
that performs well under the distribution of inputs (features
and messages) induced by the predictors used at previous
passes of inference. A strategy that we analyzed previously
in [17] to optimize such a network of modules is to simply
train a sequence of predictors, rather than a single predictor,
and train the predictors in sequence starting from the first
one. At iteration n, the previously learned predictors can
be used to generate inputs for training the n*" predictor in
the sequence. This guarantees that each predictor is trained
under the distribution of inputs it expects to see at test time.

In our synchronous message-passing scenario, this leads
to learning a different predictor for each inference pass. The
first predictor is trained to predict the ideal marginal at each
node given no information (uniform distribution messages)
from their neighbors. This predictor can then be used to per-
form a first pass of inference on all the nodes. The algorithm
then iterates until a predictor for each inference pass has
been trained. At the nt" iteration, the predictor is trained to
predict the ideal node marginals at the n*" inference pass,
given the neighbors’ messages obtained after applying the
previously learned n — 1 predictors on the training graphs
(scenes) for n — 1 inference passes (Algorithm 3.1).

In [17, 18], we have showed that this forward training
procedure guarantees that the expected sum of the loss in the
sequence is bounded by Ne, where € is the average true loss
of the learned predictors .. In our scenario, we are only
concerned with the loss at the last inference pass. Unfor-
tunately, applying naively this guarantee would tell us that
the expected loss at the last pass is bounded by Ne€ (e.g., in
the worst case where all the loss occurs at the last pass) and
would suggest that fewer inference passes is better (making
N small). However, for convex loss functions, such as the
logistic loss, simply averaging the output node marginals at
each pass, and using those average marginals as final out-
put, guarantees’ achieving loss no worse than €. Hence,
using those average marginals as final output enables using
an arbitrary number of passes to ensure we can effectively
find the best decoding.

2If f is convex and p = % Zf\le pi, then f(p) < % Zf;l F(pi)-

Some recent work is related to our approach. [19]
demonstrates that constrained simple classification can pro-
vide good performance in NLP applications. The technique
of [21] can be understood as using forward training on a
synchronous message passing using only marginals, simi-
lar to mean-field inference. Similarly, from our point of
view, [13] implements a "half-pass” of hierarchical mean-
field message passing by descending once down a hierarchy
making contextual predictions. We demonstrate in our ex-
periments the benefits of enabling more general (BP-style)
message passing.

3.2. Local Training for Asynchronous Message-
Passing

In asynchronous message-passing, messages from nodes
to their neighbors are sent immediately. This creates a long
sequence of dependent messages that grows with the num-
ber of nodes, in addition to the number of inference passes.
Hence the previous forward training procedure is imprac-
tical in this case for large graphs, as it requires training a
large number of predictors. Fortunately, an iterative ap-
proach called Dataset Aggregation (DAgger) [18] that we
developed in prior work can train a single predictor to pro-
duce all predictions in the sequence and still guarantees
good performance on its induced distribution of inputs over
the sequence. For our asynchronous message-passing set-
ting, DAgger proceeds as follows. Initially inference is per-
formed on the training graphs by using the ideal marginals
from the training data to classify each node and generate
a first training distribution of inputs. The dataset of inputs
encountered during inference and target ideal marginals at
each node is used to learn a first predictor. Then the process
keeps iterating by using the previously learned predictor to
perform inference on the training graphs and generate a new
dataset of encountered inputs during inference, with the as-
sociated ideal marginals. This new dataset is aggregated
to the previous one and a new predictor is trained on this
aggregated dataset (i.e., containing all data collected so far
over all iterations of the algorithm). This algorithm is sum-
marized in Algorithm 3.2. [18] showed that for strongly
convex losses, such as regularized logistic loss, this algo-
rithm has the following guarantee:

Theorem 3.1. [18] There exists a predictor h,, in the se-
quence hy.y such that Eqq, [((z,h,)] < €+ O(%), for

. N
€ = argminy ey 3 325y Eona,, [z, b)),

dy, is the inputs distribution induced by predictor h. This
theorem indicates that DAgger guarantees a predictor that,
when used during inference, performs nearly as well as
when classifying the aggregate dataset. Again, in our case
we can average the predictions made at each node over the
inference passes to guarantee such final predictions would
have an average loss bounded by € + O(%) To make the

Initialize Dg < (), hq to return the ideal marginal on any
variable v in the training graph.
forn =1to N do
Use h,_; to perform asynchonous message-passing
inference on training graphs.
Get dataset D, of inputs encountered during inference,
with their ideal marginal as target.
Aggregate dataset: D,, = D,,_q U D,.
Train h,, on D,, to minimize a loss (e.g., logistic).
end for
Return best h,, on training or validation graphs.

2741

Algorithm 3.2: DAgger Algorithm for Learning Asyn-
chronous Message-Passing.

factor O(%) negligible when looking at the sum of loss over
the whole graph, we can choose N to be on the order of the
number of nodes in a graph. Though in practice, often much
smaller number of iterations (N € [10, 20]), is sufficient to
obtain good predictors under their induced distributions.

3.3. Global Training via Back-Propagation

In both synchronous and asynchronous approaches, the
local training procedures provide rigorous performance
bounds on the loss of the final predictions; however, they
do not optimize it directly. If the predictors learned are
differentiable functions, a procedure like back-propagation
[12] make it possible to identify local optima of the objec-
tive (minimizing loss of the final marginals). As this op-
timization problem is non-convex and there are potentially
many local minima, it can be crucial to initialize this de-
scent procedure with a good starting point. The forward
training and DAgger algorithms provide such an initial-
ization. In our setting, Back-Propagation effectively uses
the current predictor (or sequence of) to do inference on a
training graph (forward propagation); then errors are back-
propagated through the network of classification by rewind-
ing the inference, successively computing derivatives of the
output error with respect to parameters and input messages.

4. Experiments: Scene Labeling

To demonstrate the efficacy of our approach, we com-
pared our performance to state-of-the-art algorithms on two
labeling problems from publicly available datasets: (1) 3D
point cloud classification from a laser scanner and (2) 3D
surface layout estimation from a single image.

4.1. Datasets

3D Point Cloud Classification. We evaluate on the 3D
point cloud dataset® used in [14]. This dataset consists of
17 full 3D laser scans (total of ~1.6 million 3D points) of

3http://www.cs.cmu.edu/” vmr/datasets/oakland_3d/cvpr09/

an outdoor environment and contains 5 object labels: Build-
ing, Ground, Poles/Tree-Trunks, Vegetation, and Wires (see
Fig. 1). We design our graph structure as in [14] and use the
same features. The graph is constructed by linking each 3D
point to its 5 nearest neighbors (in 3D space) and defining
high-order cliques (clusters) over regions from two k-means
clusterings over points. The features describe the local ge-
ometry around a point or cluster (linear, planar or scattered
structure; and its orientation); as well as a 2.5-D elevation
map. In [14], performance is evaluated on one fold where
one scene is used for training, one for validation, and the
remaining 15 are used for testing. In order to allow each
method to better generalize across different scenes, we in-
stead split the dataset into 2 folds with each fold containing
8 scans for testing and the remaining 9 scans are used for
training and validation (we always keep the original train-
ing scan in both folds’ training sets). We report overall per-
formances on the 16 test scans.

3D Surface Layout Estimation. We also evaluate our
approach on the problem of estimating the 3D surface
layout from single images, using the Geometric Context
Dataset* from Hoiem et al. [7]. In this dataset, the prob-
lem is to assign the 3D geometric surface labels to pixels in
the image (see Fig. 1). This task can be viewed as a 3-class
or 7-class labeling problem. In the 3-class case, the labels
are Ground/Supporting Surface, Sky, and Vertical structures
(objects standing on the ground), and in the 7-class case
the Vertical class is broken down into 5 subclasses: Left-
perspective, Center-perspective, Right-perspective, Porous,
and Solid. We consider the 7-class problem. In [7] the au-
thors use superpixels as the basic entities to label in con-
junction with 15 image segmentations. Various features
are computed over the regions which capture location and
shape, color, texture, and perspective. Boosted decision
trees are trained per segmentation and are combined to ob-
tain the final labeling. In our approach, we define a graph
over the superpixels, create edges between adjacent super-
pixels, and consider the multiple segmentations as high-
order cliques. We use the same respective features and 5-
fold evaluation as detailed in [7].

4.2. Approaches

Conditional Random Field (CRF). One baseline is a
pairwise, Pott’s CREF, trained using asynchronous Loopy BP
to estimate the gradient of the partition function.

Max-Margin Markov Network (M>N). Another is the
high-order [8], associative M®N [20] model from [14]; we
use their implementation’. We analyzed linear models op-
timized with the parametric subgradient method (M>N-P)
and with functional subgradient boosting (M3N-F).

Synchronous Mean-Field Inference Machine. We

“http://www.cs.illinois.edu/homes/dhoiem/projects/data.html
Shttp://www-2.cs.cmu.edu/” vmr/software/software.html

2742

used our proposed approach to train a synchronous mean-
field inference machine (MFIM) using the forward training
procedure (Sect. 3.1). A simple logistic regressor is used
to predict the node marginals (messages) at each pass. As
this is a mean-field approach, at each node we predict a new
marginal using all of its neighbors’ messages (i.e., no cavity
method). For the 3D point cloud dataset, the feature vec-
tors are obtained by concatenating® the messages with the
node, edge, and cluster 3D features. For 3D surface estima-
tion, we defined the feature vectors similarly except that the
edge/cluster features are averaged together instead of being
concatenated.

Asynchronous BP Inference Machine. We also train
an asynchronous belief propagation inference machine. In
this case, inference starts at a random node and proceeds
in breadth-first-search order and alternates between forward
and backward order at consecutive passes. Again a sim-
ple logistic regressor to predict the node marginals (mes-
sages). We compare 3 different approaches for optimizing
it. BPIM-D: DAgger’ from Sect. 3.2. BPIM-B: Back-
Propagation starting from a 0 weight vector. BPIM-DB:
Back-Propagation starting from the predictor found with
DAgger (only for point cloud dataset). For both datasets,
the input feature vector is constructed exactly as for the syn-
chronous mean-field inference machine when predicting the
final classification of a node. However, when sending mes-
sages to neighbors and clusters the cavity method is used
(i.e., the features related to the node/cluster we are sending
a message to are removed from the concatenation/average).

4.3. Results

We measure the performance of each method in terms
of per site (i.e., over points in the point cloud and super-
pixels in the image) accuracy, the Macro-F1 score (average
of the per class F1 scores), and Micro-F1 score (weighted
average, according to class frequency, of the per class F1
scores). Table 1 summarizes the results for each approach
and dataset.

3D Point Cloud Classification. We observe that the
best approach overall is the functional gradient M3N ap-
proach of [14]. We believe that for this particular dataset
this is due to the use of a functional gradient method, which
is less affected by the scaling of features and large class
imbalance in this dataset. We can observe that when us-
ing the regular parametric subgradient M3N approach, the
performance is slightly worse than our inference machine
approach, also optimized via parametric gradient descent.
Hence using a functional gradient approach when training

6We concatenate up to 20 neighbors, ordered by physical distance, and
append with zeros if there are less than 20 neighbors

"DAgger is used for 30 iterations, and the predictor that has the low-
est error rate (from performing message-passing inference) on the training
scenes is returned as the best one.

3D Point Clouds 3D Surface Layout
Accuracy Macro-FI ~ Micro-F1 Accuracy Macro-FI ~ Micro-F1
BPIM-D 0.9795 0.8206 0.9799 0.6467 0.5971 0.6392
BPIM-B 0.9728 0.6504 0.9706 0.6287 0.5705 0.6149
BPIM-DB 0.9807 0.8305 0.9811 - - -
MFIM 0.9807 0.8355 0.9811 0.6378 0.5947 0.6328
CRF 0.9750 0.8067 0.9751 0.6126 0.5369 0.5931
M3N-F 0.9846 0.8467 0.9850 0.6029 0.5541 0.6001
M3N-P 0.9803 0.8230 0.9806 - - -
[7] - - - 0.6424 0.6057 0.6401

Table 1: Comparisons of overall performances on the two datasets.

0.04 : :
---CRF

\ —BPIM-B
-e-BPIM-D

0035, —BPIM-DB
MFIM

S “

S 003

50 TS

w \

- b

b 251]

" \\ .

0.02—\'¥

00155 A

5
Inference Pass

Figure 4: Average test error as a function of pass for each
message-passing method on the 3D classification task.

the base predictor with our inference machine approaches
could potentially lead to improved performance. Both infer-
ence machines (MFIM, BPIM-D) outperform the baseline
CRF message-passing approach. Additionally, we observe
that using backpropagation on the output of DAgger slightly
improved performance. Without this initialization, back-
propagation does not find a good solution. In this particular
dataset we do not notice any advantage of the cavity method
(BPIM-D) over the mean-field approach (MFIM). In Fig.
4, we observe that the error of all asynchronous message-
passing approaches converge roughly after 3-4 inference
passes, while the synchronous message-passing (MFIM)
converges slightly slower and requires around 6 passes.

We also performed the experiment on the smaller split
used in [14] (i.e., training on a single scene) and our
approach (BPIM-D) obtained slightly better accuracy of
97.27% than the best approach in [14] (M3N-F: 97.2%).
However, in this case, backpropagation did not further im-
prove the solution on the test scenes as it overfits more to a
single training scene.

3D Surface Layout Estimation. In this experiment our
BPIM-D approach performs slightly better than all other ap-
proaches in terms of accuracy, including the performance
of the previous state-of-the-art in [7]. In terms of F1 score,

2743

[7] is slightly better. Given that [7] used a more power-
ful base predictor (boosted trees) than our logistic regres-
sor, we believe we could also achieve better performance
using more complex predictors. We notice here a larger dif-
ference between the BPIM and MFIM approaches, which
confirms the cavity method can lead to better performance.
Here the M>?N-F approach did not fare very well and all
message-passing approaches outperformed it. All inference
machine approaches also outperformed the baseline CRF.
Fig. 6 shows a visual comparison of the M®N-F, MFIM,
BPIM-D and [7] approaches on two test images. The out-
puts of BPIM-D and [7] are very similar, but we can observe
more significant improvements over the M3N-F.

5. Conclusion and Future Work

We presented a novel approach to structured prediction
which is simple to implement, has strong performance guar-
antees, and performs as well as state-of-the-art methods
across multiple domains. The efforts presented here by
no means represent the end of a line of research; we be-
lieve there is substantial remaining research to be done in
learning inference machines. In particular, while we present
simple effective approaches (Forward training, DAgger) for
leveraging local information to learn a deep modular infer-
ence machine, we believe alternate techniques may be very
effective at addressing this optimization. Further, while
the message passing approaches we investigate here often
provide outstanding performance, other methods including
sampling and graph-cut based approaches are often consid-
ered state-of-the-art for other tasks. We believe the simi-
lar ideas of unrolling such procedures and using notions of
global and local training may prove equally effective and
are worthy of investigation. Additionally, a significant (un-
explored) benefit of the approach taken here is that we can
easily include features and computations not typically con-
sidered as part of the graphical model approach and still
attempt to optimize overall performance; e.g., computing
new features or changing the structure based on the results
of partial inference.

Figure 6: Estimated 3D point cloud labels. From left to right: M?3N-F, M3N-P, MFIM, Ground truth.

Acknowledgements

This work is supported by the ONR MURI grant
N00014-09-1-1052, Reasoning in Reduced Information
Spaces, by the National Sciences and Engineering Research
Council of Canada (NSERC), and by a QinetiQ North
America Robotics Fellowship.

References

(1]
[2]
[3]
[4]
[5]
[6]
(7]
[8]
[9]

[10]

Y. Bengio. Learning deep architectures for Al. Foundations and
Trends in Machine Learning, 2(1), 2009.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. 7-PAMI, 23(1), 1999.

L. Csato, M. Opper, and O. Winther. Tap gibbs free energy, belief
propagation and sparsity. In NIPS, 2001.

H. Daumé 111, J. Langford, and D. Marcu. Search-based structured
prediction. MLJ, 75(3), 2009.

G. Elidan, I. McGraw, and D. Koller. Residual belief propagation: In-
formed scheduling for asynchronous message passing. In UAI, 2006.
T. Finley and T. Joachims. Training structural svms when exact in-
ference is intractable. In ICML, 2008.

D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout
from an image. IJCV, 75(1), 2007.

P. Kohli, L. Ladicky, and P. H. Torr. Robust higher order potentials
for enforcing label consistency. IJCV, 82(3), 2009.

A. Kulesza and F. Pereira. Structured learning with approximate in-
ference. In NIPS, 2008.

S. Kumar, J. August, and M. Hebert. Exploiting inference for ap-
proximate parameter learning in discriminative fields: An empirical
study. In EMMCVPR, 2005.

2744

(11]

[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
(21]
(22]

(23]

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
ICML, 2001.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. /EEE, 86(11), 1998.

D. Munoz, J. A. Bagnell, and M. Hebert. Stacked hierarchical label-
ing. In ECCV, 2010.

D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert. Contex-
tual classification with functional max-margin markov networks. In
CVPR, 2009.

M. Opper and D. Saad. Advanced Mean Field methods — Theory and
Practice. MIT Press, 2000.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., 1988.
S.Ross and J. A. Bagnell. Efficient reductions for imitation learning.
In AISTATS, 2010.

S. Ross, G. J. Gordon, and J. A. Bagnell. No-Regret Reductions for
Imitation Learning and Structured Prediction. In AISTATS, 2011.

D. Roth, K. Small, and I. Titove. Sequential learning of classifiers
for structured prediction problems. In AISTATS, 2009.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks.
In NIPS, 2003.

Z. Tu and X. Bai. Auto-context and its application to high-level vi-
sion tasks and 3d brain image segmentation. 7-PAMI, 32(5), 2009.
M. J. Wainwright. Estimating the “wrong” graphical model: Benefits
in the computation-limited setting. JMLR, 7(11), 2006.

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-based repa-
rameterization for approximate estimation on loopy graphs. In NIPS,
2001.

