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Imitation Learning

• Many successes:

– Legged locomotion [Ratliff 06]

– Outdoor navigation [Silver 08]

– Helicopter flight [Abbeel 07]

– Car driving [Pomerleau 89]

– etc...
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Example Scenario

Policy

Steering in [-1,1]

Hard left turn Hard right turn

Input: Output:

Learning to drive from demonstrations

Camera Image
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Supervised Training Procedure

Expert Trajectories
Dataset

Learned Policy: ))]s(,s,([Εminargˆ *

*)(D~s
sup 







5



Poor Performance in Practice
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# Mistakes Grows Quadratically in T!

 2
T)ˆ(J sup 

Exp. # of mistakes 
over T steps

Avg. loss on D(*)

# time steps

Reason: Doesn’t learn how to recover from errors!

[Ross 2010]
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Reduction-Based Approach & Analysis
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Easier Related Problem(s)Hard Learning Problem

Performance: f(ε) Performance: ε

Example: Cost-sensitive Multiclass classification to Binary 
classification [Beygelzimer 2005]

, , ...



Previous Work: Forward Training

• Sequentially learn one policy/step

• # mistakes grows linearly:

– J(1:T)  Tε

• Impractical if T large

*

1

2

n-1

n

[Ross 2010]
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Previous Work: SMILe

• Learn stochastic policy, changing policy slowly

– n = n-1 + αn(’n - *)

– ’n trained to mimic * under D(n-1)

– Similar to SEARN [Daume 2009]

• Near-linear bound:

– J()  O(Tlog(T)ε + 1)

• Stochasticity undesirable 

[Ross 2010]

n-1
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DAgger: Dataset Aggregation

• Collect trajectories with expert *
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DAgger: Dataset Aggregation
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• Collect trajectories with expert *

• Dataset D0 = {(s, *(s))}
*
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DAgger: Dataset Aggregation

*

• Collect trajectories with expert *

• Dataset D0 = {(s, *(s))}

• Train 1 on D0
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DAgger: Dataset Aggregation

• Collect new trajectories with 1
1
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DAgger: Dataset Aggregation

• Collect new trajectories with 1

• New Dataset D1’ = {(s, *(s))}
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DAgger: Dataset Aggregation

• Collect new trajectories with 1

• New Dataset D1’ = {(s, *(s))}

• Aggregate Datasets:

D1 = D0 U D1’
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DAgger: Dataset Aggregation

• Collect new trajectories with 1

• New Dataset D1’ = {(s, *(s))}

• Aggregate Datasets:

D1 = D0 U D1’

• Train 2 on D1
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DAgger: Dataset Aggregation

2
• Collect new trajectories with 2

• New Dataset D2’ = {(s, *(s))}

• Aggregate Datasets:

D2 = D1 U D2’

• Train 3 on D2
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DAgger: Dataset Aggregation

n

• Collect new trajectories with n

• New Dataset Dn’ = {(s, *(s))}

• Aggregate Datasets:

Dn = Dn-1 U Dn’

• Train n+1 on Dn
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Online Learning

AdversaryLearner
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Online Learning

AdversaryLearner
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Online Learning
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Online Learning

AdversaryLearner

...
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Online Learning

AdversaryLearner

...

Avg. Regret: 







  

 

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i

i
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DAgger as Online Learning

AdversaryLearner

))]s(,s,([E)(L *

)(D~s
n

n






...
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DAgger as Online Learning

AdversaryLearner
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DAgger as Online Learning

AdversaryLearner




 
n

i
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1

1 


Follow-The-Leader (FTL)
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Theoretical Guarantees of DAgger

• Best policy  in sequence 1:N guarantees:

)N/T(O)(T)(J NN  

Avg. Loss on Aggregate 
Dataset Avg. Regret of 1:N
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Theoretical Guarantees of DAgger

• Best policy  in sequence 1:N guarantees:

• For strongly convex loss, N = O(TlogT) iterations:

)N/T(O)(T)(J NN  

)(OT)(J N 1 

Avg. Loss on Aggregate 
Dataset Avg. Regret of 1:N
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Theoretical Guarantees of DAgger

• Best policy  in sequence 1:N guarantees:

• For strongly convex loss, N = O(TlogT) iterations:

• Any No-Regret algorithm has same guarantees

)N/T(O)(T)(J NN  

)(OT)(J N 1 

Avg. Loss on Aggregate 
Dataset Avg. Regret of 1:N
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Theoretical Guarantees of DAgger

• If sample m trajectories at each iteration, w.p. 1-:

)Nm/)/log(T(O)ˆ(T)(J NN  1

Empirical Avg. Loss on 
Aggregate Dataset

Avg. Regret of 1:N
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Theoretical Guarantees of DAgger

• If sample m trajectories at each iteration, w.p. 1-:

• For strongly convex loss, N = O(T2log(1/)) , m=1, 
w.p. 1-:

)(OˆT)(J N 1 

Empirical Avg. Loss on 
Aggregate Dataset

Avg. Regret of 1:N
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Experiments: 3D Racing Game

Steering in [-1,1]

Input: Output:

Resized to 25x19 
pixels (1425 features)
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DAgger Test-Time Execution
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Average Falls/Lap

B
etter
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Experiments: Super Mario Bros

Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Extracted 27K+ binary features from last 4 observations
(14 binary features for every cell)

Output:Input:

From Mario AI competition 2009
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Test-Time Execution
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Conclusion

• Take-Home Message

– Simple iterative procedures can yield much better performance.

• Can also be applied for Structured Prediction:

– NLP (e.g. Handwriting Recognition)

– Computer Vision [Ross & al., CVPR 2011]

• Future Work:

– Combining with other Imitation Learning techniques [Ratliff 06] 

– Potential extensions to Reinforcement Learning? 40



Questions
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Structured Prediction
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...

...

.........

• Example: Scene Labeling

Image Graph Structure 
over Labels



Structured Prediction
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• Sequentially label each node using neighboring
predictions

– e.g. In Breath-First-Search Order (Forward & Backward 
passes) 

A B

C D

A B C D C B ...

Graph Sequence of Classifications



Structured Prediction
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• Input to Classifier:

– Local image features in neighborhood of pixel

– Current neighboring pixels’ labels

• Neighboring labels depend on classifier itself

• DAgger finds a classifier that does well at predicting 
pixel labels given the neighbors’ labels it itself 
generates during the labeling process.



Experiments: Handwriting Recognition

[Taskar 2003]

Current letter in
{a,b,...,z}

Input: Output:

Previous 
predicted letter:

Image current 
letter:

o
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Test Folds Character Accuracy
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