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Imitation Learnin

* Many successes: | " , ——

— Legged locomotion [Ratliff 06] k«., St

— Outdoor navigation [Silver 08] —
— Helicopter flight [Abbeel 07]
— Car driving [Pomerleau 89]

— etc...




Example Scenario
Learning to drive from demonstrations

Input: Output:
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o T 1
Camera Image Steermgﬂ ’ ]\

Hard left turn Hard right turn
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Supervised Training Procedure

Dataset

Expert Trajectories

~
...
e
...
...

Learned Policy: 7, =argmin DE(J )[6(72,5,72*(5))] :
rerl  S~D(z*



Poor Performance in Practice




# Mistakes Grows Quadratically in T!

[Ross 2010]

A 2
f (ﬂsup) i g\
Exp. # of mistakes Avg. loss on D(n*)

over T steps
# time steps

Reason: Doesn’t learn how to recover from errors! :



Reduction-Based Approach & Analysis

Hard Learning Problem Easier Related Problem(s)

Performance: f(g) - Performance: €

Example: Cost-sensitive Multiclass classification to Binary
classification [Beygelzimer 2005] 8



Previous Work: Forward Training

[Ross 2010]
* Sequentially learn one policy/step

* # mistakes grows linearly:
—J(my) S Te

* Impractical if T large




Previous Work: SMlLe

[Ross 2010]

* Learn stochastic policy, changing policy slowly

— Ty =Ty F an(n,n - %)

— 1’ trained to mimic ©* under D(x,, ,)
— Similar to SEARN [Daume 2009]

 Near-linear bound:
— J(rt) £ O(Tlog(T)e + 1)

e Stochasticity undesirable

Steering

from expert
10



DAgger: Dataset Aggregation

* Collect trajectories with expert n*

l Steering from
expert
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DAgger: Dataset Aggregation

e Collect trajectories with expert *

* Dataset D, = {(s, m*(s))}

l Steering from
expert
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DAgger: Dataset Aggregation

* Collect trajectories with expert n*

e Dataset D, = {(s, *(s))}

* Train T, on D,

l Steering from
expert
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DAgger: Dataset Aggregation

T

* Collect new trajectories with mw,

Steering from
| expert
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DAgger: Dataset Aggregation

T

* Collect new trajectories with 7,

* New Dataset D," ={(s, m*(s))}

Steering from
expert
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DAgger: Dataset Aggregation

T

* Collect new trajectories with m,

* New Dataset D,” ={(s, m*(s))}

* Aggregate Datasets:
D,=D,UD/

Steering from
expert
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DAgger: Dataset Aggregation

Collect new trajectories with 7,
New Dataset D,” = {(s, ©*(s))}

Aggregate Datasets:

D,=D,UD,’

Train T, 0on D,

T

Steering from
expert
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DAgger: Dataset Aggregation

Collect new trajectories with 7,
New Dataset D,” = {(s, ©*(s))}

Aggregate Datasets:

D,=D,UD,’

Train T;on D,

Steering from
expert

18



DAgger: Dataset Aggregation

Collect new trajectories with
New Dataset D’ = {(s, ©*(s))}

Aggregate Datasets:
D =D _,UD/

Train T, ,,0on D, l

Steering from
expert
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Learner

Online Learning

Adversary
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Learner

Online Learning

t;{f

Current Hypothesis h
n

Adversary
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Learner

Online Learning

++/__

Adversary
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Learner

Online Learning

E ++/_
Current Hypothesis h
n
+
+ -

o

Adversary
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Learner

Online Learning

++/__

Adversary

24



Online Learning

Learner

Current Hypothesis h
n

Avg. Regret: 7, =—

iLi(hi)_

.

min

hGH |

Adversary

iLi(h)
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DAgger as Online Learning

Learner ' Adversary

L.(z)=_E [Uzsz )] 2

S~D(7z'n)



DAgger as Online Learning

Learner ' Adversary

L.(z)=_E [Uzsz )] 2

S“'D(ﬂ'n)



DAgger as Online Learning

Learner ' Adversary

Follow-The-Leader (FTL) L,(#) :s-.D'%, )[f(yz,s,yz*(s))] >



Theoretical Guarantees of DAgger

* Best policy  in sequence 7., guarantees:
J(7) < T(ey+yy)+O(T/N)

/ N \It ti f
Avg. Loss on Aggregate erations o

Dataset Avg. Regret of m,., DAgger
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Theoretical Guarantees of DAgger

* Best policy  in sequence 7., guarantees:

J(7)<T(gy +yy)+O(T/N)
/ N T~
Avg. Loss on Aggregate Iterations of

Dataset Avg. Regret of m,., DAgger

* For strongly convex loss, N = O(TlogT) iterations:

J(7)<Teg +0(1)

30



Theoretical Guarantees of DAgger

* Best policy  in sequence 7., guarantees:

J(7)<T(gy +yy)+O(T/N)
/ . T~
Ave. L n Accregate lterations of
g. Loss on Aggrega
Dataset Avg. Regret of m,, DAgger

* For strongly convex loss, N = O(TlogT) iterations:

J(7)<Teg +0(1)

* Any No-Regret algorithm has same guarantees
31



Theoretical Guarantees of DAgger

* If sample m trajectories at each iteration, w.p. 1-0:

I(7) < T(Zy +7y) +O(T+/log(L/ 5) //Nm)
/N

Empirical Avg. Loss on Avg. Regret of mt,.,
Aggregate Dataset
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Theoretical Guarantees of DAgger

* If sample m trajectories at each iteration, w.p. 1-0:

I(7) < T(Zy +7y) +O(T+/log(L/ 5) //Nm)
VAN

Empirical Avg. Loss on Avg. Regret of mt,.,
Aggregate Dataset

* For strongly convex loss, N = O(T?log(1/d)) , m=1,
w.p. 1-0: R
J(7)<Tg +0OQ)
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Experiments: 3D Racing Game

Input: Output:

Steering in [-1,1]

Resized to 25x19
pixels (1425 features)
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DAgger Test-Time Execution

Features

35
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Experiments: Super Mario Bros
From Mario Al competition 2009

Input: Output:
Jump in {0,1}
» Right in {0,1}
7 Leftin {0,1}
; Speed in {0,1}

QOO0 0

H Extracted 27K+ binary features from last 4 observations

(14 binary features for every cell) 37



Test-Time Execution

FP:%: 24

Yelected Actions:




N

Better
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Conclusion

 Take-Home Message
— Simple iterative procedures can yield much better performance.

e Can also be applied for Structured Prediction:
— NLP (e.g. Handwriting Recognition)
— Computer Vision [Ross & al., CVPR 2011]

* Future Work: il

— Combining with other Imitation Learni

- — e

BT

gtechnlques [Ratliff 06]

— Potential extensions to Reinforcement Learning? 40



Questions



Structured Prediction

 Example: Scene Labeling

Image Graph Structure
over Labels

=)

42



Structured Prediction

* Sequentially label each node using neighboring
predictions

— e.g. In Breath-First-Search Order (Forward & Backward
passes)

43



Structured Prediction

Input to Classifier:
— Local image features in neighborhood of pixel
— Current neighboring pixels’ labels

Neighboring labels depend on classifier itself

DAgger finds a classifier that does well at predicting
pixel labels given the neighbors’ labels it itself
generates during the labeling process.



Experiments: Handwriting Recognition

[imenAiAd

[

Input:

Image current

letter: E »
Previous

predicted letter: O

[Taskar 2003]

Output:

Current letter in
{a,b,...,z}

45



Test Folds Character Accuracy
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