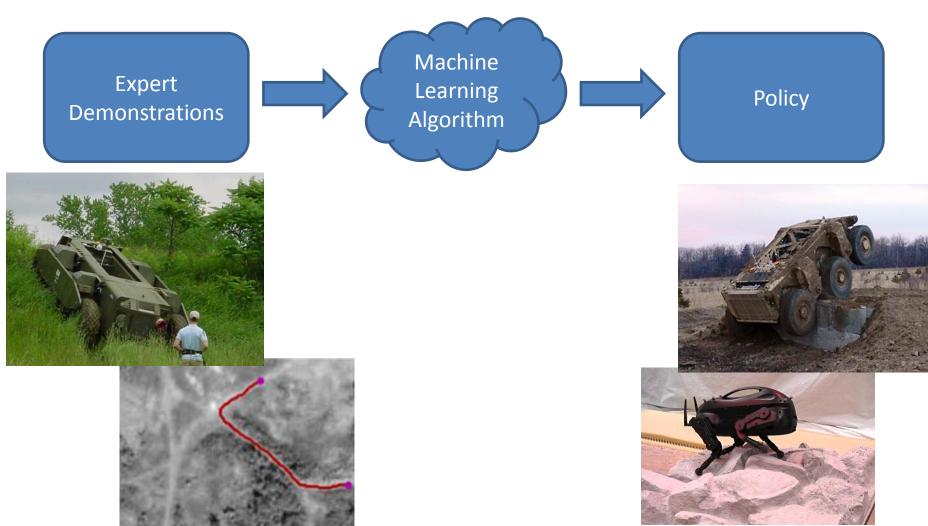
Reduction of Imitation Learning to No-Regret Online Learning

Stephane Ross

Joint work with Drew Bagnell & Geoff Gordon

Imitation Learning



Imitation Learning

- Many successes:
 - Legged locomotion [Ratliff 06]
 - Outdoor navigation [Silver 08]
 - Helicopter flight [Abbeel 07]
 - Car driving [Pomerleau 89]
 - etc...

Example Scenario

Learning to drive from demonstrations

Input:

Camera Image

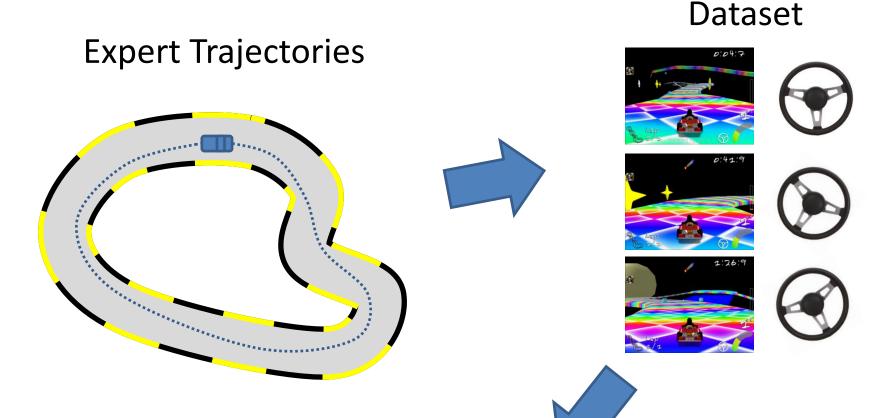
Output:



Steering in [-1,1]

Hard left turn Hard right turn

Supervised Training Procedure

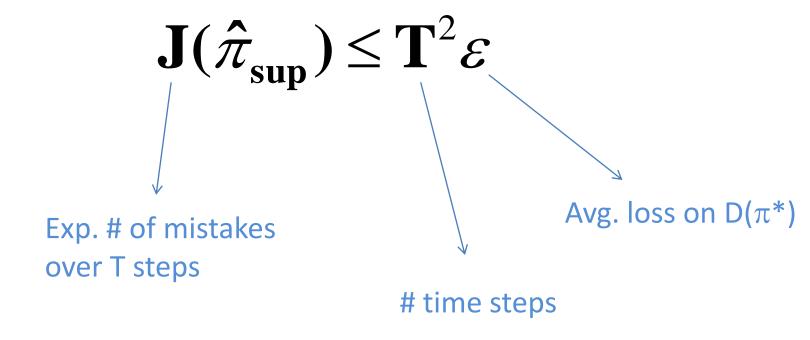


Learned Policy: $\hat{\pi}_{\sup} = \underset{\pi \in \Pi}{\operatorname{argmin}} \operatorname{E}_{s \sim D(\pi^*)} [\ell(\pi, s, \pi^*(s))]$

Poor Performance in Practice

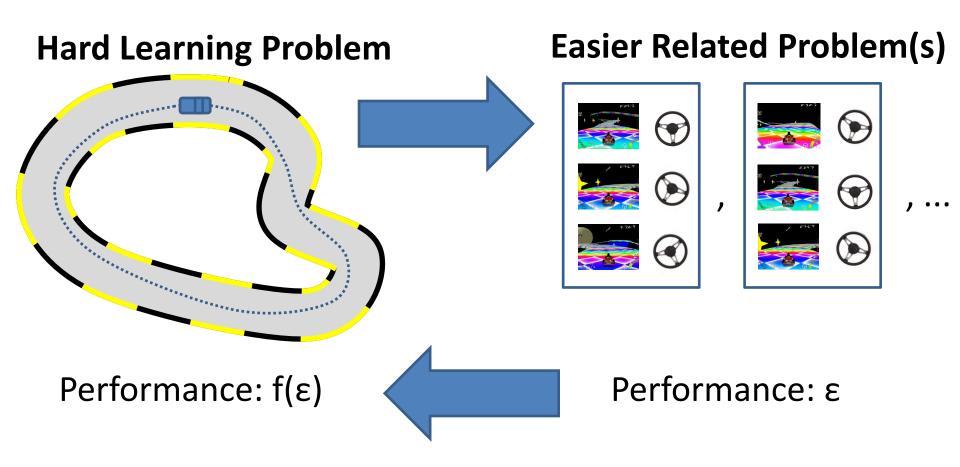
Mistakes Grows Quadratically in T!

[Ross 2010]



Reason: Doesn't learn how to recover from errors!

Reduction-Based Approach & Analysis



Example: Cost-sensitive Multiclass classification to Binary classification [Beygelzimer 2005]

Previous Work: Forward Training

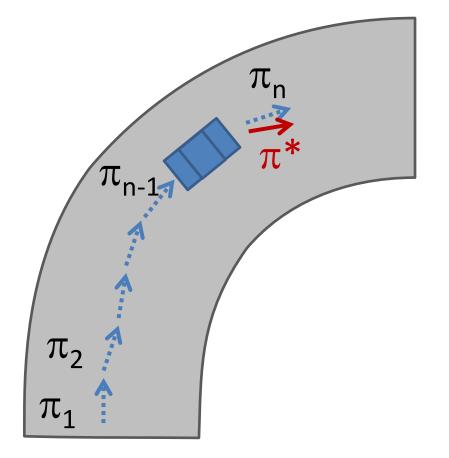
[Ross 2010]

Sequentially learn one policy/step

mistakes grows linearly:

$$-J(\pi_{1:T}) \leq T\epsilon$$

Impractical if T large



Previous Work: SMILe

[Ross 2010]

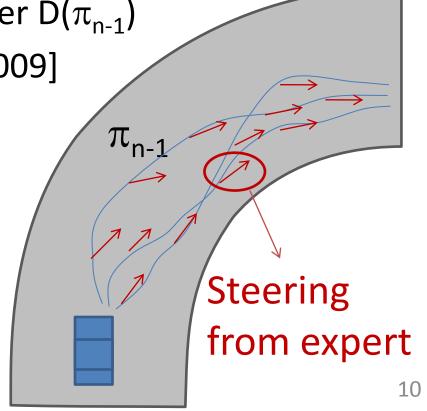
Learn stochastic policy, changing policy slowly

$$-\pi_{n} = \pi_{n-1} + \alpha_{n}(\pi'_{n} - \pi^{*})$$

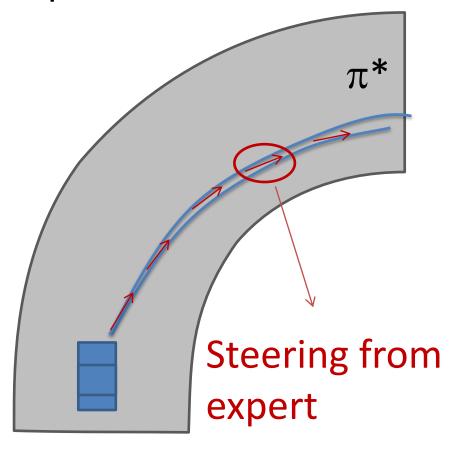
- $-\pi'_n$ trained to mimic π^* under $D(\pi_{n-1})$
- Similar to SEARN [Daume 2009]

- Near-linear bound:
 - $-J(\pi) \leq O(T\log(T)\epsilon + 1)$

Stochasticity undesirable

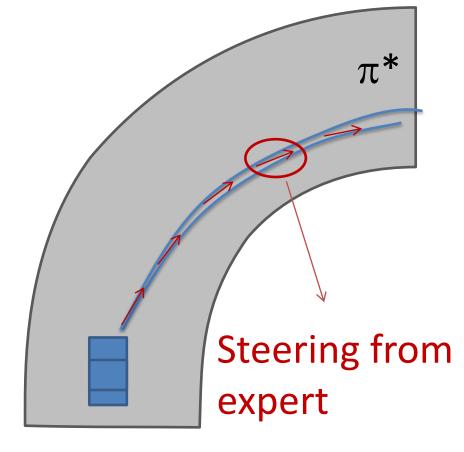


• Collect trajectories with expert π^*



• Collect trajectories with expert π^*

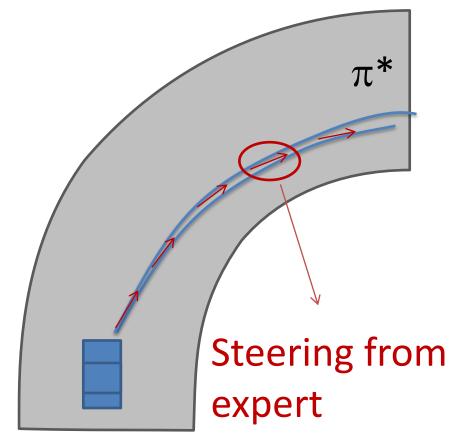
• Dataset $D_0 = \{(s, \pi^*(s))\}$



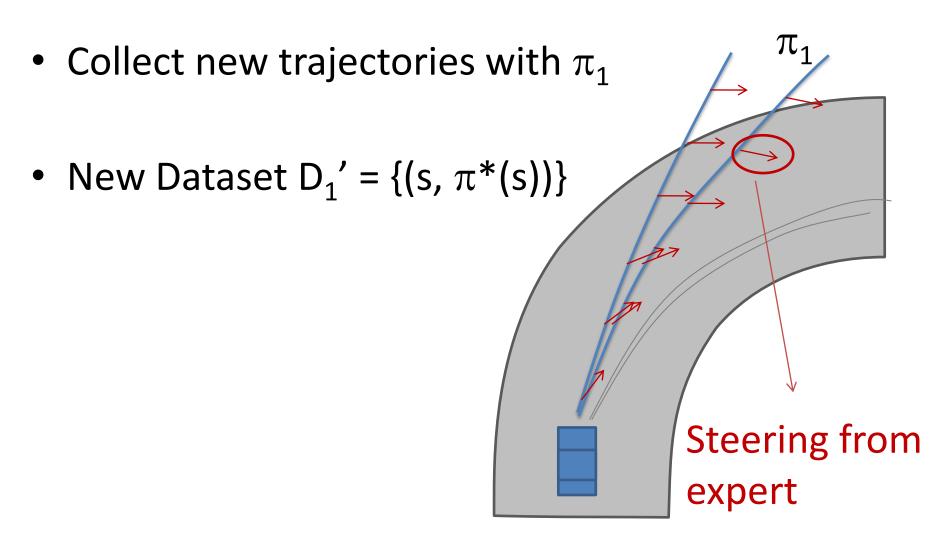
• Collect trajectories with expert π^*

• Dataset $D_0 = \{(s, \pi^*(s))\}$

• Train π_1 on D_0



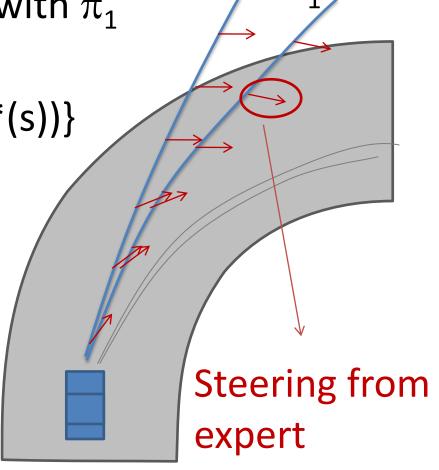
• Collect new trajectories with π_1 Steering from expert



• New Dataset $D_1' = \{(s, \pi^*(s))\}$

Aggregate Datasets:

$$D_1 = D_0 \cup D_1'$$



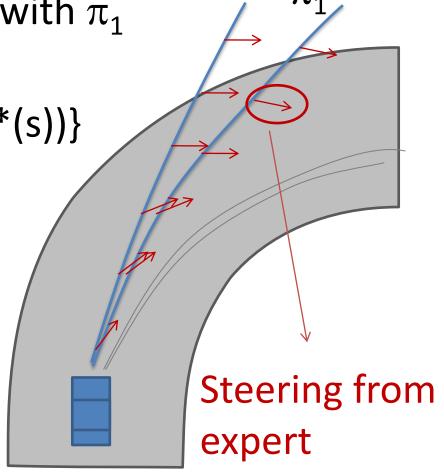
• Collect new trajectories with π_1

• New Dataset $D_1' = \{(s, \pi^*(s))\}$

Aggregate Datasets:

$$D_1 = D_0 \cup D_1'$$

• Train π_2 on D_1



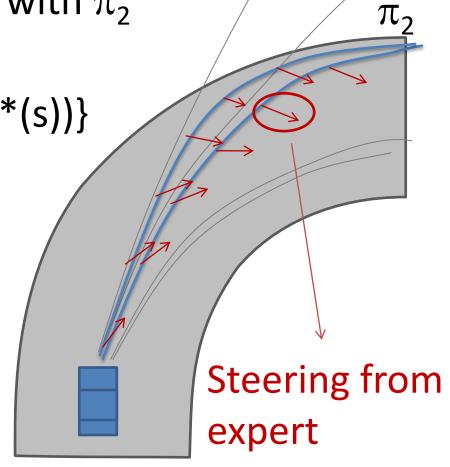
• Collect new trajectories with π_2

• New Dataset $D_2' = \{(s, \pi^*(s))\}$

Aggregate Datasets:

$$D_2 = D_1 \cup D_2'$$

• Train π_3 on D_2



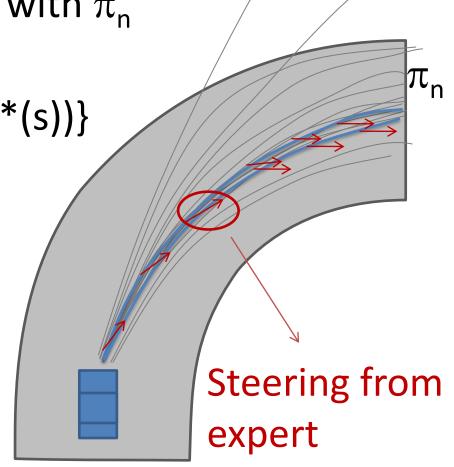
• Collect new trajectories with π_n

• New Dataset $D_n' = \{(s, \pi^*(s))\}$

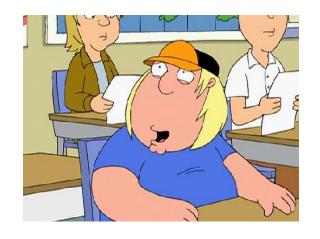
Aggregate Datasets:

$$D_n = D_{n-1} U D_n'$$

• Train π_{n+1} on D_n

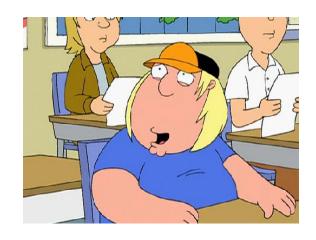


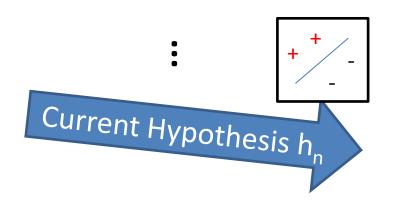
Learner



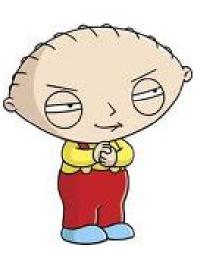
Adversary

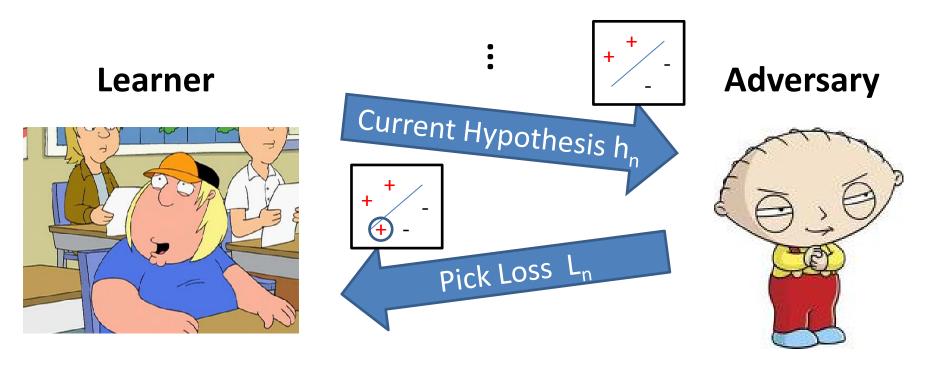
Learner

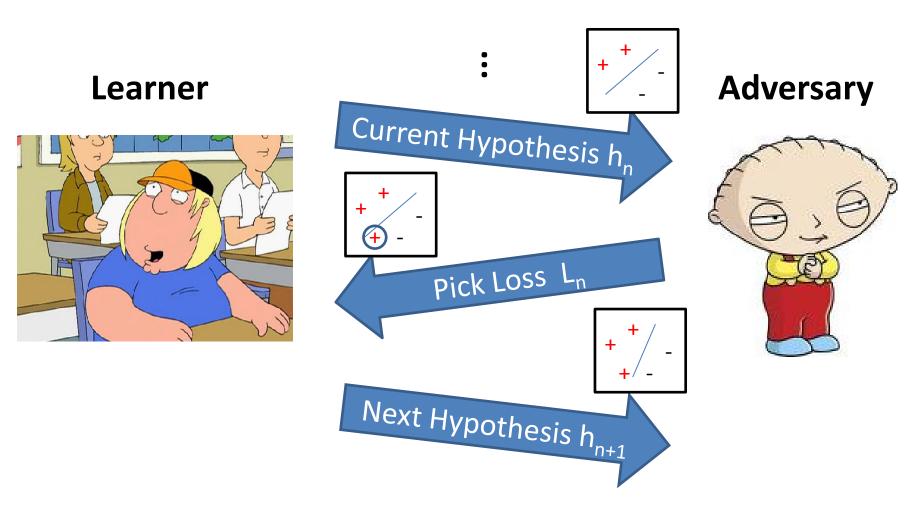


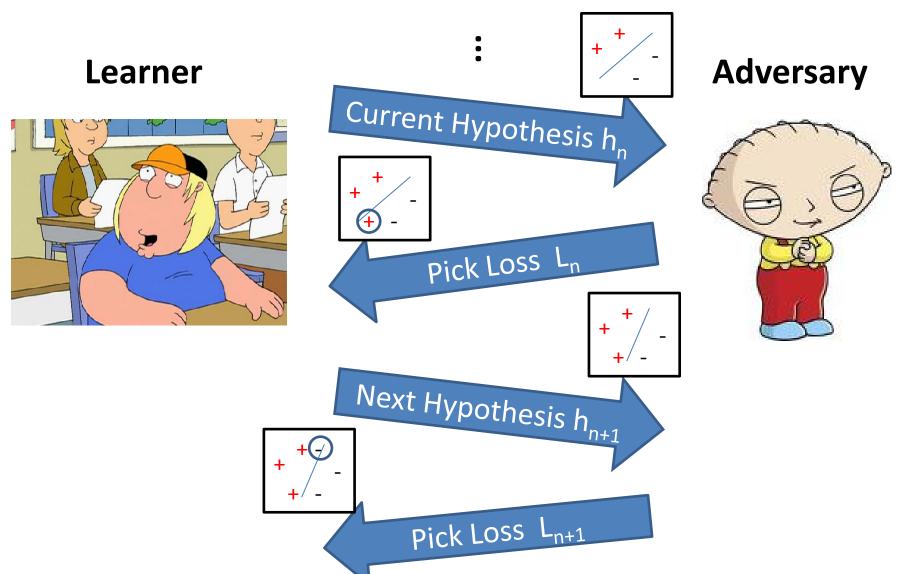


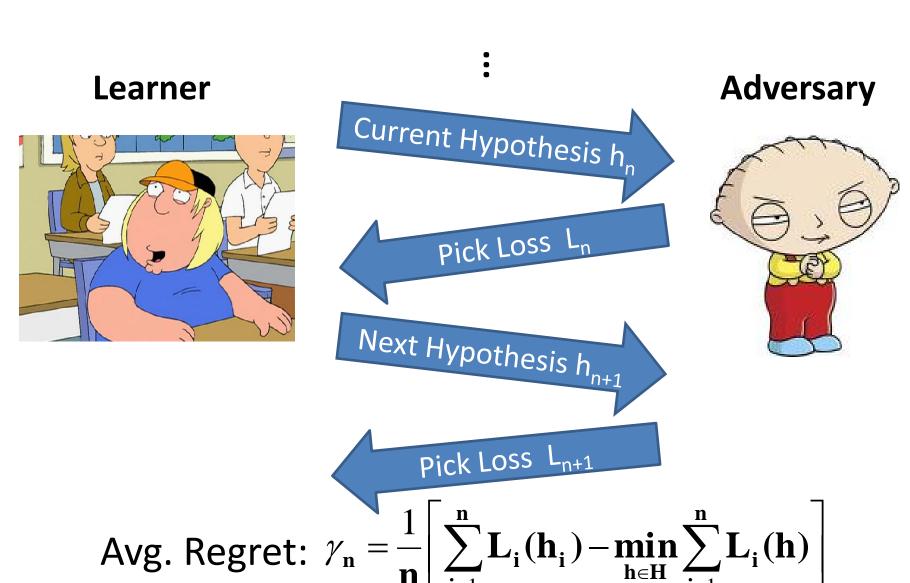
Adversary





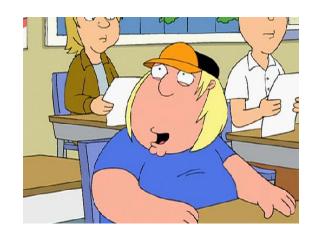


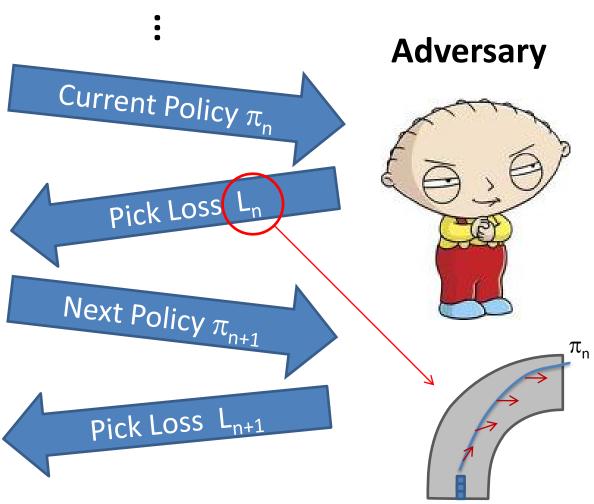




DAgger as Online Learning

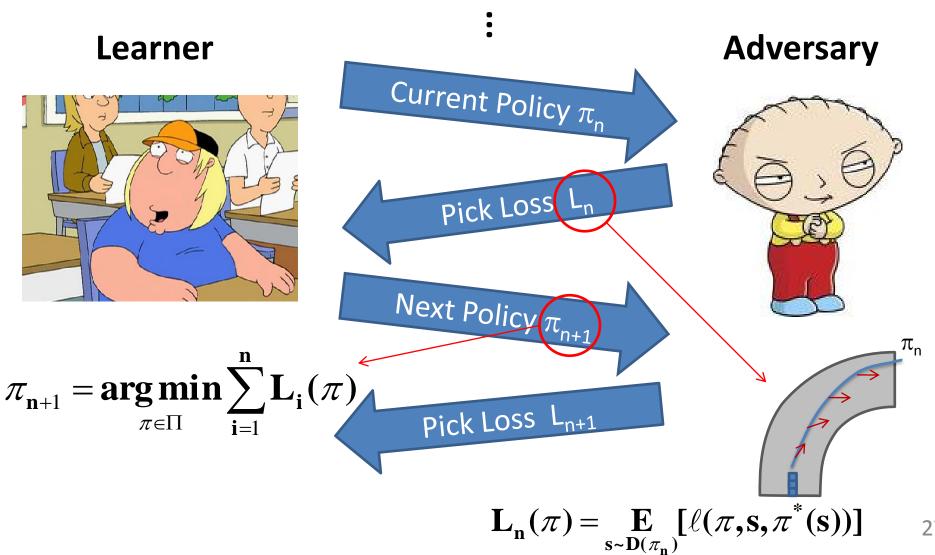
Learner



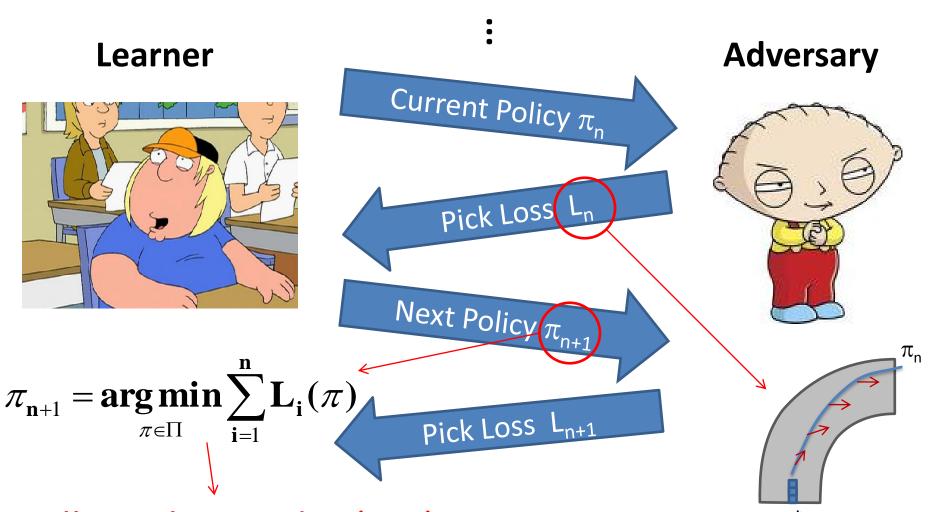


$$\mathbf{L}_{\mathbf{n}}(\pi) = \mathbf{E}_{\mathbf{s} \sim \mathbf{D}(\pi_{\mathbf{n}})} [\ell(\pi, \mathbf{s}, \pi^*(\mathbf{s}))]$$

DAgger as Online Learning



DAgger as Online Learning



Follow-The-Leader (FTL)

$$\mathbf{L}_{\mathbf{n}}(\pi) = \mathbf{E}_{\mathbf{s} \sim \mathbf{D}(\pi_{\mathbf{n}})} [\ell(\pi, \mathbf{s}, \pi^*(\mathbf{s}))]$$

• Best policy π in sequence $\pi_{1:N}$ guarantees:

$$J(\pi) \leq T(\varepsilon_N + \gamma_N) + O(T/N)$$
ss on Aggregate

Avg. Regret of $\pi_{1:N}$

DAgger

Avg. Loss on Aggregate Dataset

Avg. Regret of $\pi_{1:N}$

• Best policy π in sequence $\pi_{1:N}$ guarantees:

$$J(\pi) \leq T(\mathcal{E}_N + \gamma_N) + O(T/N)$$
 Avg. Loss on Aggregate Dataset
$$\text{Avg. Regret of } \pi_{1:N}$$
 DAgger

For strongly convex loss, N = O(TlogT) iterations:

$$J(\pi) \le T\varepsilon_N + O(1)$$

• Best policy π in sequence $\pi_{1:N}$ guarantees:

For strongly convex loss, N = O(TlogT) iterations:

$$\mathbf{J}(\pi) \leq \mathbf{T}\varepsilon_{\mathbf{N}} + \mathbf{O}(1)$$

Any No-Regret algorithm has same guarantees

• If sample **m trajectories** at each iteration, w.p. 1- δ :

$$\mathbf{J}(\pi) \leq \mathbf{T}(\hat{\varepsilon}_{\mathbf{N}} + \gamma_{\mathbf{N}}) + \mathbf{O}(\mathbf{T}\sqrt{\log(1/\delta)}/\sqrt{\mathbf{Nm}})$$

Empirical Avg. Loss on Avg. Regret of π_{1-N} Aggregate Dataset

• If sample **m trajectories** at each iteration, w.p. 1- δ :

$$\mathbf{J}(\pi) \leq \mathbf{T}(\hat{\varepsilon}_{\mathbf{N}} + \gamma_{\mathbf{N}}) + \mathbf{O}(\mathbf{T}\sqrt{\log(1/\delta)}/\sqrt{\mathbf{Nm}})$$

Empirical Avg. Loss on Avg. Regret of π_{1-N} **Aggregate Dataset**

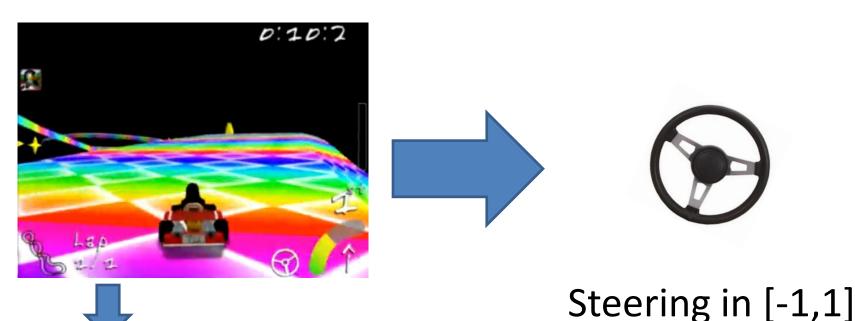
• For strongly convex loss, $N = O(T^2 \log(1/\delta))$, m=1, w.p. $1-\delta$:

$$\mathbf{J}(\pi) \leq \mathbf{T}\hat{\boldsymbol{\varepsilon}}_{\mathbf{N}} + \mathbf{O}(1)$$

Experiments: 3D Racing Game

Input:

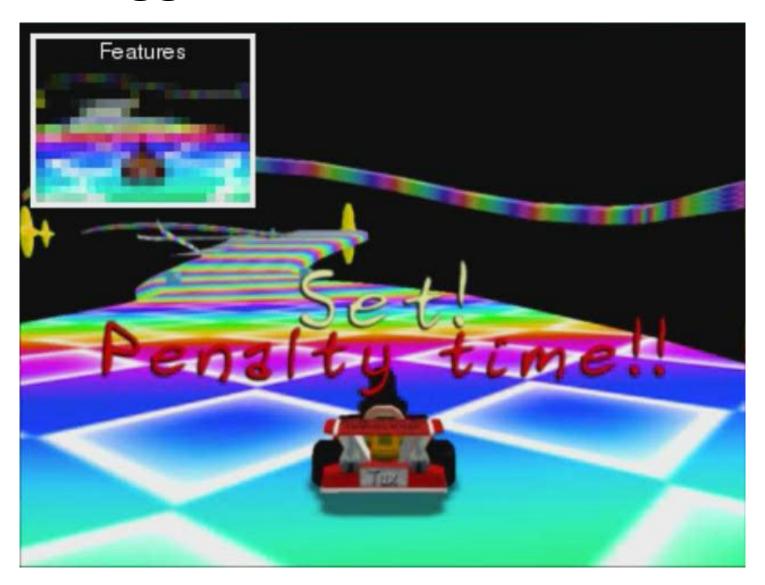
Output:



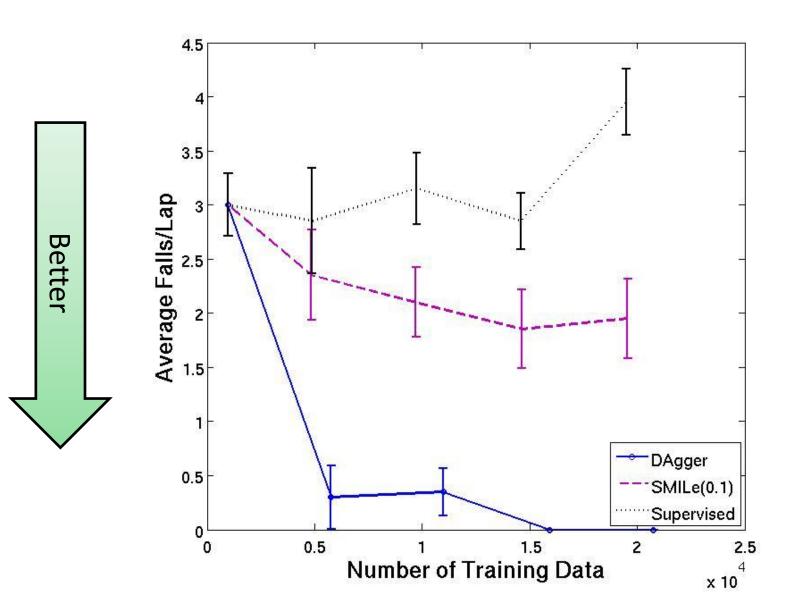
Resized to 25x19 pixels (1425 features)

34

DAgger Test-Time Execution



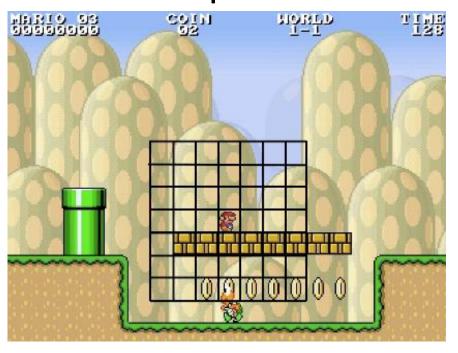
Average Falls/Lap



Experiments: Super Mario Bros

From Mario Al competition 2009

Input:



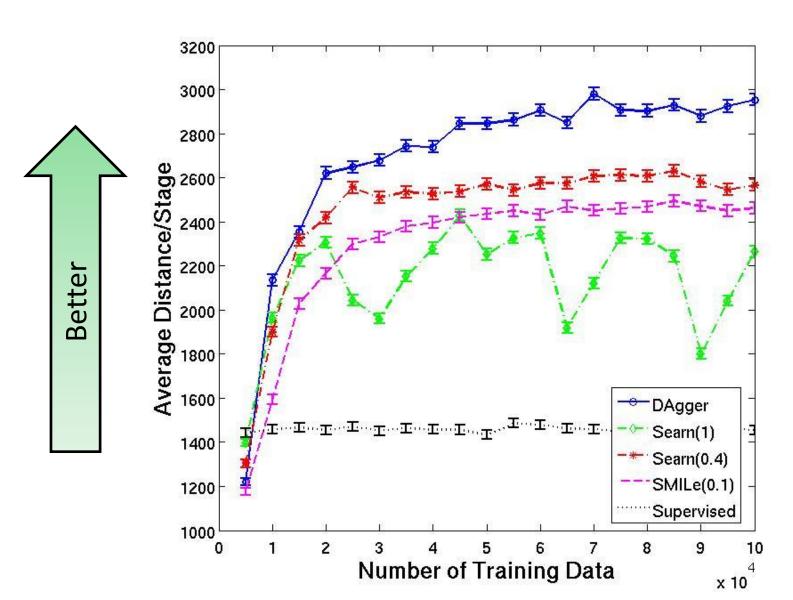
Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Extracted 27K+ binary features from last 4 observations (14 binary features for every cell)

Test-Time Execution

```
Attempt: 1 of 1
AgentLinear
Selected Actions:
            RIGHT
                                                    SPEED
```

Average Distance/Stage



Conclusion

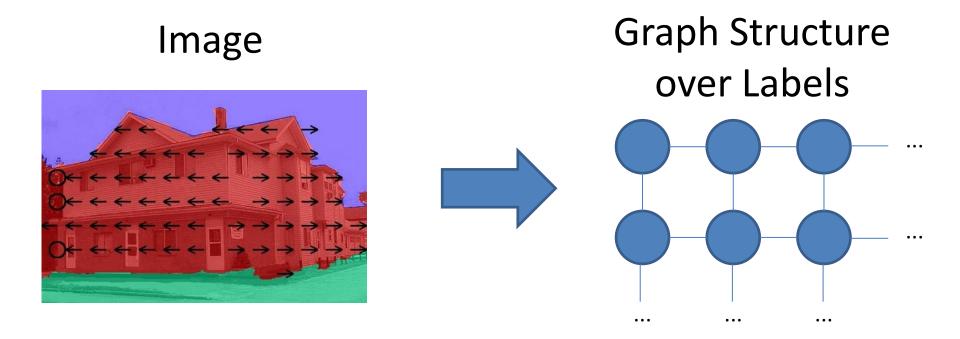
- Take-Home Message
 - Simple iterative procedures can yield much better performance.
- Can also be applied for Structured Prediction:
 - NLP (e.g. Handwriting Recognition)
 - Computer Vision [Ross & al., CVPR 2011]

- Future Work:
 - Combining with other Imitation Learning techniques [Ratliff 06]
 - Potential extensions to Reinforcement Learning?

Questions

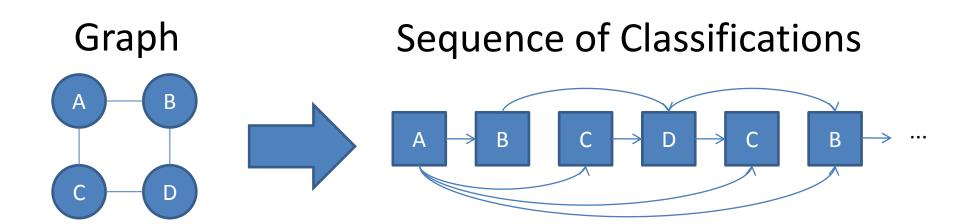
Structured Prediction

Example: Scene Labeling



Structured Prediction

- Sequentially label each node using neighboring predictions
 - e.g. In Breath-First-Search Order (Forward & Backward passes)

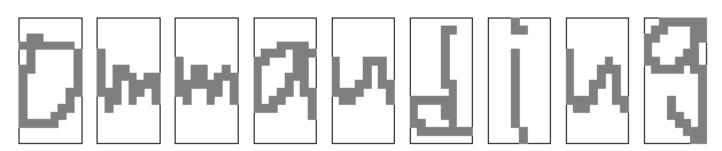


Structured Prediction

- Input to Classifier:
 - Local image features in neighborhood of pixel
 - Current neighboring pixels' labels
- Neighboring labels depend on classifier itself

 DAgger finds a classifier that does well at predicting pixel labels given the neighbors' labels it itself generates during the labeling process.

Experiments: Handwriting Recognition

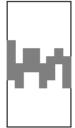


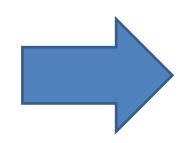
[Taskar 2003]

Input:

Image current letter:

Previous predicted letter:





Output:

Current letter in {a,b,...,z}

Test Folds Character Accuracy

