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Detailed Proofs

Proof of Theorem 2.1

(s)] fori = 1,2,...,

0-1 loss at time ¢ of 7, such that ¢ = % ZiT:1 ¢;. Note
that €; corresponds to the probability that 7 makes a mis-
take under distribution df.. Let p; represent the proba-
bility 7 hasn’t made a mistake (w.r.t. 7*) in the first ¢-
step, and d; the distribution of state 7 is in at time ¢ con-
ditioned on the fact it hasn’t made a mistake so far. If d}
represents the distribution of states at time ¢ obtained by
following 7* but conditioned on the fact that 7 made at
least one mistake in the first ¢ — 1 visited states. Then
dt. = pi_1di + (1 — pi—1)d,. Now at time ¢, the ex-
pected cost of 7 is at most 1 if it has made a mistake so
far, or Esq, (C(s)) if it hasn’t make a mistake yet. So
J(7) < 31 [pt-1Esna, (C#(5))+(1—pi—1)]. Let ey and
e} represent the probability of mistake of 7 in distribution
dy and dj. Then Eg g, (C7(s)) < Egug, (Crr(s)) +es, and
since €t = pi—1€6¢ + (1 —ptfl)eg, then Pt—1€¢ < €t. Addi-
tionnally since p; = (1 — e¢)pi—1,pt > pr1 — € > 1 —
S eiie 1—p; <S'_ | ¢. Finally note that J(7*) =
Yo [P 1B, (Coe (8)) +(1=pi-1) By (Cre (5))], 50
that 23:1 Pt—1Esd, (Crx(8)) < J(m*). Using these facts
we obtain:

Let¢; = E g [ex T the expected

J(m) < Zthl[pt—lESNd,,(Cﬁ(S)) + (1 —pi_1)]
< ZtT 1[pt IES""dt (C <(8)) +pr—res + (1 — pi1)]
J(m*) + Zt 1 Zz 16

SJ( )+th:1€t
=J(m*) + T

Proof of Theorem 3.1
At iteration ¢ we are only changing the policy at step 7, so

J(rt) = g™ (whd) = J(r'7Y) + A(r1, wh). Solving
this recurrence proves the theorem.
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Proof of Lemma 4.1

With probability o (1—a)T=# (%), 7" executes 7"+ T —i
times and 7" i times. Hence J(7") = (1 —a)TJ (7"~ 1)+
Yo (L—a) 7 (7)Jr" (7). Since (1 - ) =1~

S a1 —a)T (%), we obtain:
J(x) = J(7" ) + ZZT Loi(1— a)Tfi(f)Ai(ﬂnq’ﬁn)
<J(m )+ i@ (L= a) T (At 7"
+T Zi:k+1 o (1—a)’™ 1(7;)

for any k, since A;(m,n’) < T for any 4, m, 7’. The last
summation term can be bounded as follows:

S ai(l—a)Ti(7)

—z?k ‘(?) Yo (- a>'<T;Z'>

= Zz 0 (T kT):ZLJrk)l Zj 0 —a)j%
ok (1) S S el (- a>%

—ak(i)

where the inequality is true for a < % since

T—k—i i T—F)!
ZJ’ZOA (=)’ i!jI(Y(“—k—)i—j)!
(T+@+k), < () for all . The first and last equality are
from the binomial and multinomial theorem respectively.
Hence we obtain a recurrence and expanding itupton = 0
proves the lemma.

> 0 for such o and

Proof of Lemma 4.2

With probability (1—p,,)”, 7™ never queries the expert and
has T-step cost of J(7™), with probability p,, (1 —p,)T 1,
7™ queries once at time ¢ and has T-step cost of JJ (7°, 1)
and in all other cases, it has cost > 0. Since (1 — p,,)? >

(1 — p,T) we have that:

J(7") > (1= pn) " T(7") + pn T(l—pn)T LI (x0)
> J(7@) 4+ paT[(1 = pp) "I (7°) — J ()]
> J(ﬁ—n) _pnT2

Proof of Theorem 4.1

First, since for SMILe 7! will be close to 7", we can
derive bounds on the policy disadvantages. Let €,4; =



Running heading title breaks the line

)
(1—a)" (‘f (7t — " (7))
2A; (77, A7) + 4(1 — )2 Tep 4y

Proof of 1) This follows immediatly from the fact
that J{Tn(ﬁ_n-t,-l) th 1[(1 _ Oé) Jrr (A*n—&-l t) _|_
o Sy (1-0) L (77 )] and J(x7) = 4 ST [(1-
Q)" I (1) + a3 (1= a) = H T (77, 1))
Proof of 2) Let p,, = (1—«)™. First notice that J (7', t) =
77 Yoy J3 (7', t,7). Using this and the fact that
At = p T 4+ (1 — p,)7" and 7" = p,7* + (1 —
Pn)7", we have that:

A1(7r ﬂ"*l)
T(T 1)2 Zt/ t+1pn[‘]2 (A*nH»W*at»t/)
—|—J2 ( * A*n+17tt)_2j2 (7T tt/)}
+pn( )[JT{' (A*n+1 ~n ) .
+pn(1 pn)[Jz (7, 7o, t ) = J3 (ﬁnm*»ut’)l

Using this previous fact, we obtain that:

Ao (7™ 7r”+1)

= (%) t 1 Zt’—tJrlpn[JQ (A*n—H t,t')—
JF (7 )+ I () —
Jgr"’(fr*”Jrl,ﬂ*,t,t’)] +2A1(71'n,ﬁ'n+1)

The bound follows from the fact that when 7*"*! acts like
* at timestep ¢, the term in brackets is 0, and when 7*"+1
doesn t act like 7* at timestep {, it is less than 27"

Theorem 4.1 follows from these bound, Lemma 4.1 for

k = 2 and Lemma 4.2, choosing o = 7“27\/\/1% and
N = %log T.

Proof of Lemma 4.3

To prove this, we will condition on the number of times
k, that 7™ executes 7™ (i.e. does not execute the experts
policy). Since 7™ does not execute the expert’s policy k

times over 7T steps with probability (1 — pn)kaTL k (k) we

have that: D(n") = Zf o1 = pn)kpl— ’“( )D7r (™).
Now 7" = 111’#%” Ly alp" L7*" The theorem fol-
lows from the fact that if 7" is executed k times, it will
always execute 7”1 over those k times with probability
( 111’7;”1) and it will execute 7*™ at least once with prob-

ability 1 — (*722=2)*,
Example

The example in this section demonstrates that there exist
problems where SMILe and Forward Training can guaran-
tee strictly better performance than the traditional super-
vised approach, and where the traditional supervised ap-
proach achieves the O(7T?¢) regret bound.

a

Figure 1: Problem where SMILe better than the supervised
learning approach.

Consider the following problem with 3 states (s, $1, $2)
and 2 actions (aj,az2). The agent always starts in sg and
transitions are deterministic as specified in Figure

The expert’s policy 7* is to perform as in s;, and a; in
so and so, and consider the cost function we are trying
to minimize is the imitation loss with respect to 7* (i.e.
C(s,a) =1 —I(n*(s),a), where I is the indicator func-
tion).

In this example, under 7, one would only observe sy with
frequency A and s; the rest of the times, ie. dp =
(#, T2 O) Now consider the policy # which executes
ay W1th probability (1 — €T') in sg, and as in s1, S, for
some € < % This policy which could be learned by the su-
pervised learning approach achieves Esq_. (e(s, 7)) = €,
however the T-step expected cost of 7 is T%¢ (with proba-
bility €T’ it has total cost of 7', with probability 1 — €7 is
has total cost of 0). This is an example where our upper
bound in Theorem 2.1 is tight.

Now consider the Forward Training Algorithm. Here be-
cause the cost function is the imitation loss u; = 1 for all
i, as in any state, if we change the current action to per-
form 7 and then follow 7*, this will always have a total
cost less than 1. Hence if ¢; = E, g1 (eqi(s)), then

A(r=1, %) = ¢, so the forward training guarantees T€

expected T'-step cost on this problem, for € = % ZiTzl €;.

Now consider the SMILe algorithm. Let 7#*" denote
the policy trained at iteration n under the state distribu-
tion d,»-:. In this problem, in any state, as soon as
we do ™ we go to s;. If we make a mistake in any
state compared to executing 7*, we can only increase
the T-step cost by 1 plus the expected number of steps
it will take to come back to state s; under the current
policy 7"~ 1. Since 7"~ ! executes 7* with probabil-
ity at least (1 — «)"1, then this expected number of

steps is at most W Hence for any policy 7"~ 1,
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Sups,wEH,tST[JtTrnil(WJ?‘9) - Jﬂnil(ﬁ*ﬂzs)] é 1+
W. ThU.S A(Wn_l,ﬁ'*"hr*) S (1 + W)Gn,
where €, = Egva_, , (e(s,7*")). This gives us the fol-
lowing bound on A:

X N i—
A< ator Xis 1(1—04)Z Y1+ gayer)e

ST
<2y (1 ocNZz 16
=2

1(1 L Neé

Also note that:

~ a N i—
é= oy Lim(l- o) e
N

1aa)N Z’L 1€
Ne

| A

1— (1 a)V

Thus for N = 2InT, we have A < 2 InTéand € <
T2

1_ e InT€. Hence SMILe guarantees an expected 7'-step

cost of O(T log T€) on this example, which is better than

the traditional supervised approach, but slightly worse than

the forward training algorithm.



