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Detailed Proofs

Proof of Theorem 2.1

Let εi = Es∼di
π∗

[eπ̂(s)] for i = 1, 2, . . . , T the expected

0-1 loss at time i of π̂, such that ε = 1
T

∑T
i=1 εi. Note

that εt corresponds to the probability that π̂ makes a mis-
take under distribution dtπ∗ . Let pt represent the proba-
bility π̂ hasn’t made a mistake (w.r.t. π∗) in the first t-
step, and dt the distribution of state π̂ is in at time t con-
ditioned on the fact it hasn’t made a mistake so far. If d′t
represents the distribution of states at time t obtained by
following π∗ but conditioned on the fact that π̂ made at
least one mistake in the first t − 1 visited states. Then
dtπ∗ = pt−1dt + (1 − pt−1)d′t. Now at time t, the ex-
pected cost of π̂ is at most 1 if it has made a mistake so
far, or Es∼dt(Cπ̂(s)) if it hasn’t make a mistake yet. So
J(π̂) ≤

∑T
t=1[pt−1Es∼dt(Cπ̂(s))+(1−pt−1)]. Let et and

e′t represent the probability of mistake of π̂ in distribution
dt and d′t. Then Es∼dt(Cπ̂(s)) ≤ Es∼dt(Cπ∗(s))+et, and
since εt = pt−1et + (1− pt−1)e′t, then pt−1et ≤ εt. Addi-
tionnally since pt = (1 − et)pt−1, pt ≥ pt−1 − εt ≥ 1 −∑t
i=1 εi, i.e. 1− pt ≤

∑t
i=1 εi. Finally note that J(π∗) =∑T

t=1[pt−1Es∼dt(Cπ∗(s))+(1−pt−1)Es∼d′t(Cπ∗(s))], so
that

∑T
t=1 pt−1Es∼dt(Cπ∗(s)) ≤ J(π∗). Using these facts

we obtain:

J(π̂)≤
∑T
t=1[pt−1Es∼dt(Cπ̂(s)) + (1− pt−1)]

≤
∑T
t=1[pt−1Es∼dt(Cπ∗(s)) + pt−1et + (1− pt−1)]

≤ J(π∗) +
∑T
t=1

∑t
i=1 εi

≤ J(π∗) + T
∑T
t=1 εt

= J(π∗) + T 2ε

Proof of Theorem 3.1

At iteration i we are only changing the policy at step i, so
J(πi) = Jπ

i−1
(πii , i) = J(πi−1) + A(πi−1, πii). Solving

this recurrence proves the theorem.

Proof of Lemma 4.1

With probability αi(1−α)T−i
(
T
i

)
, πn executes πn−1 T−i

times and π̂n i times. Hence J(πn) = (1−α)TJ(πn−1)+∑T
i=1 α

i(1−α)T−i
(
T
i

)
J̄π

n−1

i (π̂n). Since (1−α)T = 1−∑T
i=1 α

i(1− α)T−i
(
T
i

)
, we obtain:

J(πn) = J(πn−1) +
∑T
i=1 α

i(1− α)T−i
(
T
i

)
Ai(πn−1, π̂n)

≤ J(πn−1) +
∑k
i=1 α

i(1− α)T−i
(
T
i

)
Ai(πn−1, π̂n)

+T
∑T
i=k+1 α

i(1− α)T−i
(
T
i

)
for any k, since Ai(π, π′) ≤ T for any i, π, π′. The last
summation term can be bounded as follows:∑T

i=k α
i(1− α)T−i

(
T
i

)
=
∑T
i=k α

i
(
T
i

)∑T−i
j=0 (−α)j

(
T−i
j

)
= αk

∑T−k
i=0

T !i!
(T−k)!(i+k)!

∑T−k−i
j=0 αi(−α)j (T−k)!

i!j!(T−k−i−j)!
≤ αk

(
T
k

)∑T−k
i=0

∑T−k−i
j=0 αi(−α)j (T−k)!

i!j!(T−k−i−j)!
= αk

(
T
k

)
where the inequality is true for α ≤ 1

T since∑T−k−i
j=0 (−α)j (T−k)!

i!j!(T−k−i−j)! ≥ 0 for such α and
T !i!

(T−k)!(i+k)! ≤
(
T
k

)
for all i. The first and last equality are

from the binomial and multinomial theorem respectively.
Hence we obtain a recurrence and expanding it up to n = 0
proves the lemma.

Proof of Lemma 4.2

With probability (1−pn)T , πn never queries the expert and
has T -step cost of J(π̃n), with probability pn(1− pn)T−1,
πn queries once at time t and has T -step cost of J π̃

n

1 (π0, t)
and in all other cases, it has cost ≥ 0. Since (1 − pn)T ≥
(1− pnT ) we have that:

J(πn)≥ (1− pn)TJ(π̃n) + pnT (1− pn)T−1J̄ π̃
n

1 (π0)
≥ J(π̃n) + pnT [(1− pn)T−1J̄ π̃

n

1 (π0)− J(π̃n)]
≥ J(π̃n)− pnT 2

Proof of Theorem 4.1

First, since for SMILe π̂n+1 will be close to πn, we can
derive bounds on the policy disadvantages. Let εn+1 =



Running heading title breaks the line

Es∼dπn (e(s, π̂∗n+1)), then:

1.A1(πn, π̂n+1) = (1− α)n(J̄π
n

1 (π̂∗n+1)− J̄πn1 (π∗))
2.A2(πn, π̂n+1)≤ 2A1(πn, π̂n+1) + 4(1− α)2nTεn+1

Proof of 1) This follows immediatly from the fact
that J̄π

n

1 (π̂n+1) = 1
T

∑T
t=1[(1 − α)nJπ

n

1 (π̂∗n+1, t) +
α
∑n
i=1(1−α)i−1Jπ

n

1 (π̂∗i, t)] and J(πn) = 1
T

∑T
t=1[(1−

α)nJπ
n

1 (π∗, t) + α
∑n
i=1(1− α)i−1Jπ

n

1 (π̂∗i, t)].

Proof of 2) Let pn = (1−α)n. First notice that Jπ1 (π′, t) =
1

T−1

∑
t′ 6=t J

π
2 (π′, π, t, t′). Using this and the fact that

π̂n+1 = pnπ̂
∗n+1 + (1 − pn)π̃n and πn = pnπ

∗ + (1 −
pn)π̃n, we have that:

A1(πn, π̂n+1)
= 1

T (T−1)

∑T−1
t=1

∑T
t′=t+1 p

2
n[Jπ

n

2 (π̂∗n+1, π∗, t, t′)
+Jπ

n

2 (π∗, π̂∗n+1, t, t′)− 2Jπ
n

2 (π∗, t, t′)]
+pn(1− pn)[Jπ

n

2 (π̂∗n+1, π̃n, t, t′)− Jπn2 (π∗, π̃n, t, t′)]
+pn(1− pn)[Jπ

n

2 (π̃n, π̂∗n+1, t, t′)− Jπn2 (π̃n, π∗, t, t′)]

Using this previous fact, we obtain that:

A2(πn, π̂n+1)
= 1

(T2)
∑T−1
t=1

∑T
t′=t+1 p

2
n[Jπ

n

2 (π̂∗n+1, t, t′)−
Jπ

n

2 (π∗, π̂∗n+1, t, t′) + Jπ
n

2 (π∗, t, t′)−
Jπ

n

2 (π̂∗n+1, π∗, t, t′)] + 2A1(πn, π̂n+1)

The bound follows from the fact that when π̂∗n+1 acts like
π∗ at timestep t, the term in brackets is 0, and when π̂∗n+1

doesn’t act like π∗ at timestep t, it is less than 2T .

Theorem 4.1 follows from these bound, Lemma 4.1 for
k = 2 and Lemma 4.2, choosing α =

√
3

T 2
√

log T
and

N = 2
α log T .

Proof of Lemma 4.3

To prove this, we will condition on the number of times
k, that πn executes π̃n (i.e. does not execute the experts
policy). Since πn does not execute the expert’s policy k
times over T steps with probability (1− pn)kpT−kn

(
T
k

)
, we

have that: D(πn) =
∑T
k=0(1 − pn)kpT−kn

(
T
k

)
Dπ∗

k (π̃n).
Now π̃n = 1−pn−1

1−pn π̃n−1 + αpn−1
1−pn π̂

∗n. The theorem fol-
lows from the fact that if π̃n is executed k times, it will
always execute π̃n−1 over those k times with probability
( 1−pn−1

1−pn )k, and it will execute π̂∗n at least once with prob-

ability 1− ( 1−pn−1
1−pn )k.

Example

The example in this section demonstrates that there exist
problems where SMILe and Forward Training can guaran-
tee strictly better performance than the traditional super-
vised approach, and where the traditional supervised ap-
proach achieves the O(T 2ε) regret bound.

s0

s1

s2

a1

a2

a1 a1

a2

a2

Figure 1: Problem where SMILe better than the supervised
learning approach.

Consider the following problem with 3 states (s0, s1, s2)
and 2 actions (a1, a2). The agent always starts in s0 and
transitions are deterministic as specified in Figure 1.

The expert’s policy π∗ is to perform a2 in s1, and a1 in
s0 and s2, and consider the cost function we are trying
to minimize is the imitation loss with respect to π∗ (i.e.
C(s, a) = 1 − I(π∗(s), a), where I is the indicator func-
tion).

In this example, under π∗, one would only observe s0 with
frequency 1

T and s1 the rest of the times, i.e. dπ∗ =
( 1
T ,

T−1
T , 0). Now consider the policy π̂ which executes

a1 with probability (1 − εT ) in s0, and a2 in s1, s2, for
some ε ≤ 1

T . This policy which could be learned by the su-
pervised learning approach achieves Es∼dπ∗ (e(s, π̂)) = ε,
however the T -step expected cost of π̂ is T 2ε (with proba-
bility εT it has total cost of T , with probability 1 − εT is
has total cost of 0). This is an example where our upper
bound in Theorem 2.1 is tight.

Now consider the Forward Training Algorithm. Here be-
cause the cost function is the imitation loss ui = 1 for all
i, as in any state, if we change the current action to per-
form π and then follow π∗, this will always have a total
cost less than 1. Hence if εi = Es∼di

πi−1
(eπii (s)), then

A(πi−1, πii) = εi, so the forward training guarantees T ε̄
expected T -step cost on this problem, for ε̄ = 1

T

∑T
i=1 εi.

Now consider the SMILe algorithm. Let π̂∗n denote
the policy trained at iteration n under the state distribu-
tion dπn−1 . In this problem, in any state, as soon as
we do π∗ we go to s1. If we make a mistake in any
state compared to executing π∗, we can only increase
the T -step cost by 1 plus the expected number of steps
it will take to come back to state s1 under the current
policy πn−1. Since πn−1 executes π∗ with probabil-
ity at least (1 − α)n−1, then this expected number of
steps is at most 1

(1−α)n−1 . Hence for any policy πn−1,
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sups,π∈Π,t≤T [Jπ
n−1

t (π, t, s) − Jπ
n−1

(π∗, t, s)] ≤ 1 +
1

(1−α)n−1 . Thus A(πn−1, π̂∗n|π∗) ≤ (1 + 1
(1−α)n−1 )εn,

where εn = Es∼dπn−1 (e(s, π∗n)). This gives us the fol-
lowing bound on Ã:

Ã≤ α
1−(1−α)N

∑N
i=1(1− α)i−1(1 + 1

(1−α)i−1 )εi
≤ 2 α

1−(1−α)N

∑N
i=1 εi

= 2 α
1−(1−α)N

Nε̄

Also note that:

ε̃= α
1−(1−α)N

∑N
i=1(1− α)i−1εi

≤ α
1−(1−α)N

∑N
i=1 εi

= α
1−(1−α)N

Nε̄

Thus for N = 2
α lnT , we have Ã ≤ 4

1− 1
T2

lnT ε̄ and ε̃ ≤
2

1− 1
T2

lnT ε̄. Hence SMILe guarantees an expected T -step

cost of O(T log T ε̄) on this example, which is better than
the traditional supervised approach, but slightly worse than
the forward training algorithm.


