
Fastpass
Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, Hans Fugal

M.I.T Computer Science & Artificial Intelligence Lab Facebook

http://fastpass.mit.edu/

Presented By: Norman Ponte (nponte)

2014

Introduction

Data Center Scheduling: Why is it Important?

✉ Data Centers place content near their consumers
✉ Current Data Center Design inherit the principles from original Internet Design
✉ Packets spend a lot of time in big memory intensive queues

Main Ideas

✉ Ideal: Low median and tail latency, high throughput, fair resource allocation,
deadline awareness, congestion avoidance

✉ Current Centers address these needs but not effectively
✉ Goals: No queuing Delays, High Utilization, Multiple Resource Objectives between

flows applications users
✉ Use of Arbiter to control each packets timing
✉ Centralized control at granularity of individual packets

Key Insights

✉ A centralized arbiter can be implemented and work
✉ Multicore Arbiter
✉ Arbiter can do a better job at resource allocation for workloads with different

performance objectives

Related Work

✉ Using a Centralized Controller but don’t provide control over packet latencies or
allocations

✉ Hedera/TDMA/Mordia - optimization for elephant flows
✉ Orchestra - Application-level coordinating transfers
✉ SWAN - reconfigure the data plane to match demand, Forwarding Tables
✉ Distributed Approaches set to solve data center problems
✉ DCTCP/HULL - reduce switch queuing, do not eliminate queuing delay
✉ MATE/DARD - reroute traffic selfishly until converging to load balanced solution

Architecture

Three Key Components

✉ Timeslot Allocation Algorithm
✉ Path Assignment Algorithm
✉ Replication Strategy for the Central Arbiter

Timeslot Allocation

✉ Choose a matching of endpoints in each timeslot
✉ Rearrangeably non blocking (RNB) tiers: Any traffic that satisfies the input and

output bandwidth constraints
✉ Allows them to separate timeslot allocation from path selection
✉ This needs to be fast: greedily allocates a source-destination pair if it doesn’t

violate bandwidth constraints
✉ Pipelined timeslot allocation

min-FCTMax-min fairness

Path Selection

✉ Assign packets with timeslots to paths through the network that avoiding queuing
✉ Balance packet load across all available links
✉ Timeslot allocation guarantees that we can do this
✉ Path between two ToR can be uniquely specified by a core switch
✉ Assign a core switch to each packet such that no two packets with the same source ToR or

destination ToR assigned same core switch
✉ Vertices:ToR switches, Edges: Packets, Colors: Core Switch
✉ Fast Edge-Coloring using Euler-split O(n d log(d)) time : n racks d nodes

Handling Faults

✉ 3-types:
✉ Failure of Arbiter

❏ Fastpass runs multiple arbiters
❏ Backup arbiters receive all requests so no need to share information on failure

✉ Failure of In-Network Components

❏ Usage of package drops to detect network faults

✉ Packet loss on communication: Endpoints -> Arbiter

❏ Fastpass Control Protocol (FCP)
❏ Endpoints and Arbiter have an aggregate count of time slots requested non-matching values

implies loss in communication

Results

Slightly Less Throughput and Much Less Queueing

Due to FCP (Fastpass Control Protocol) use of traffic

High Load Latency Improvement 15.5x

5200x standard deviation of throughput: Fairness

Facebook Deployment

✉ Able to test their algorithm on Facebook data centers
✉ Almost no benefit except 2x lowering of TCP retransmits
✉ Latency-sensitive service - response path for use web requests
✉

Going Forward

Real world Value & Evaluation

✉ The authors admit that scalability is a concern
✉ Arbiter would have to handle large volume of traffic : Custom Hardware?
✉ Facebook Concerns
✉ “Zero Queue” - movement of queues to the arbiter
✉ Open door for high-performance, tightly-integrated, predictable networks

Questions?

