
EffiCuts: Optimizing 
Packet Classification for 
Memory and Throughput
Authors: Balajee Vamanan, Gwendolyn Voskuilen 
and T. N. Vijaykumar

Published in: SIGCOMM 2010

Presenter: Guoyao Feng



Packet Classification
● Goal

○ Categorize packets by matching it against the 
highest priority rule

● Why classify packets?
○ Firewall / NAT
○ Quality of service
○ Traffic analysis

● Rule example
Rule ID Network-layer 

destination
Network-layer 
source

Transport-layer 
destination

Transport-layer 
protocol

Action

R1 128.2.190.69/32 128.2.80.11/32 * * Deny

R2 128.3.3.0/24 128.2.200.157/32 eq www UDP Allow



Challenges Facing Modern Classifiers

● Classifiers growing in size
○ Custom rules of more virtual networks
○ QoS demands finer-grained differentiation on 

rules
○ Increasing number of hosts

● Increasing line-rates



Previous Approach: HiCuts
◎ Represents rules as cubes in multidimensional space
◎ Constructs a decision tree by recursively cutting the space and 

separating rules into different sub-space
◎ Eventually, rules fall into the leaf nodes
◎ Upon receiving a packet, the classifier traverses the tree to identify 

matching rules



Previous Approach: HyperCuts
◎ Improves upon HiCuts
◎ Supports multidimensional cutting at tree node

○ Collapse subtrees to reduce tree depth
◎ Percolates common rules from siblings up to the 

parent nodes
○ Reduces replication



Memory Overhead of HiCuts and 
HyperCuts 
◎ Varying size of overlapping rules

○ Necessary to apply fine cuts for separating the small rules
○ Inevitably replicating the large rules

Picture adapted from authors’ SIGCOMM presentation



Memory Overhead of HiCuts and 
HyperCuts 
◎ Varying rule-space density

○ Both HiCuts and HyperCuts adopt equi-sized cuts
○ Inadvertently partition sparse space when partitioning dense space
○ Leading to more sub-spaces/tree nodes containing few rules 

Picture adapted from authors’ SIGCOMM presentation



Optimizations in EffiCuts
◎ Separable trees
◎ Selective Tree Merging
◎ Equi-dense cuts
◎ Node Co-location



Separable Trees
◎ Intuition: Separate small (fewer wildcards) and large 

(more wildcards) rules into different trees
○ Tree1: {A, B, C}, Tree2: {D, E, F}

◎ Refinement: A subset of rules are separable if all rules 
in the subset are either small or large in each 
dimension
○ Tree1: {A, B, C}, Tree2: {D}, Tree3: {E, F}



Selective Tree Merging
◎ Pitfall of separable trees: more lookups during packet 

processing and thus lower throughput
◎ Idea: selectively merge trees
◎ Complication: merging trees is a compromise on 

separability
○ Need to minimize replication
○ Merge trees mixing rules that are small or large in at most one 

dimension

 

a1 * * * a2 b6 * *



Equi-dense Cuts
◎ Equi-size cuts simplify 

indexing of matching child 
but lead to redundancy 
due to rule-space density 
variation

◎ Equi-dense cuts produce 
partitions of similar 
density to distribute rules 
evenly among fewer 
children by fusing 
adjacent equi-sized cuts



Node Co-location
◎ Reduces the amount of memory access



Evaluation
◎ Substantial reduction in memory with modest 

increase in memory access


