i‘. 15-744 Computer Networking

Review 2 — Transport Protocols

Announcements i‘

* Project proposal
* Due 9/24

* Roughly 1/3 on each of problem statement, state-of-art,
work plan/milestones

* ~1pg total

« HW1
+ Out today, due 9/27

Outline “

* Transport introduction

* Error recovery & flow control

* TCP flow control/connection setup/data transfer
* TCP reliability

» Congestion sources and collapse

» Congestion control basics

Transport Protocols “.

* Lowest level end-to-
end protocol.

* Header generated by
sender is interpreted
only by the destination

* Routers view transport

Physical Physical

header as part of the Transport iy g Transport
payload “

* Not always true...
» Firewalls ==

router

Functionality Split n

* Network provides best-effort delivery

* End-systems implement many functions
* Reliability
* In-order delivery

Demultiplexing

* Message boundaries

« Connection abstraction

» Congestion control

Transport Protocols

«

» UDP provides just integrity and demux
 TCP adds...

» Connection-oriented

* Reliable

* Ordered

* Byte-stream

 Full duplex

* Flow and congestion controlled
+ DCCP, RTP, SCTP -- not widely used.

UDP: User Datagram Protocol [RFC 768] “

* “No frills,” “bare bones”
Internet transport

Why is there a UDP?
protocol *

No connection establishment
. y . (which can add delay)
* “Best effort” service, Simple: no connection state
UDP segments may be: at sender, receiver
. Lost * Small header
No congestion control: UDP
can blast away as fast as
desired

» Delivered out of order to
app
» Connectionless:
» No handshaking between
UDP sender, receiver
» Each UDP segment

handled independently of
others

UDP, cont.

«

« Often used for
streaming

+~—— 32 bits

multimedia apps Length, in | Source port# | Dest port #

« Loss tolerant bytes of UDP [*Length Checksum

e segment,
* Rate sensitive including

e Other UDP uses header
(why?):
- DNS Application

. data
* Reliable transfer
over UDP (message)

* Must be at
application layer
 Application-specific

error recovery

UDP segment format

UDP Checksum

"«

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment — optional use!

Sender:

Receiver:

« Treat segment contents as + Compute checksum of

sequence of 16-bit integers

* Checksum: addition (1's
complement sum) of segment

contents

+ Sender puts checksum value
into UDP checksum field

received segment

Check if computed checksum
equals checksum field value:

* NO - error detected
* YES - no error detected

But maybe errors
nonetheless?

High-Level TCP Characteristics

«

 Protocol implemented entirely at the ends
« Fate sharing (on IP)

* Protocol has evolved over time and will continue

to do so

» Nearly impossible to change the header

» Use options to add information to the header
» Change processing at endpoints
» Backward compatibility is what makes it TCP

«

TCP Header
Source port ‘ Destination port
Sequence number
Flags: EI\I(\IN Acknowledgement
RESET Heren‘ 0 ‘ Flags | Advertised window
PUSH
URG Checksum Urgent pointer
ACK Options (variable)

Evolution of TCP

1975
Three-way handshake
Raymond Tomlinson
In SIGCOMM 75

1974
TCP described by
Vint Cerf and Bob Kahn
In |IEEE Trans Comm

«

1984

Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestiol
collapse

1983
BSD Unix 4.2
supports TCP/IP

1982
TCP&IP
RFC 793 & 791

1987

Karn’s algorithm 1990

n

1986
Congestion
collapse
observed

to better estimate
round-trip time

4.3BSD Reno
fast retransmit
delayed ACK's
1988
Van Jacobson’s
algorithms
congestion avoidance
and congestion control
(most implemented in
4.3BSD Tahoe)

I

1
1975 198

1985

1990

TCP Through the 1990s

"«

1994
T/TCP
(Braden)
Transaction
TCP

1993 1994
TCP Vegas ECN
(Brakmo et al) (Floyd)
delay-based Explicit
congestion avoidance Congestion
Notification

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996 1996

Hoe FACKTCP
NewReno startup
and loss recovery

(Mathis et al)
extension to SACK

T

1993 1994 1996

Outline

* Transport introduction

«

» Error recovery & flow control

» TCP flow control/connection setup/data transfer

TCP reliability

» Congestion sources and collapse

» Congestion control basics

Stop and Wait

«

* ARQ

* Receiver sends
acknowledgement (ACK)
when it receives packet

» Sender waits for ACK and
timeouts if it does not
arrive within some time
period

Simplest ARQ protocol

» Send a packet, stop and
wait until ACK arrives

» Performance

* Can only send one
packet per round trip

Recovering from Error

«

Time

Sender

ACK

___Timeout

Receiver

P acket

{~Backer

Time

_..Timeout

...Timeout

PaCk
\et’

| aok

ACK lost

_.._Timeout

... Timeout

PaCk
\et‘

| aox

Packet lost

,,%

_Timeout

Timeout

aCket

| pox

Early timeout
DUPLICATE
PACKETS!!!

16

|
How to Recognize Resends? 1
* Use sequence numbers
 both packets and acks Pkt
\o‘

» Sequence # in packet is finite

> How big should it be? o
 For stop and wait? Pkt o

+ One bit —won't send seq #1 oK
until received ACK for seq #0 $<'857~/L

How to Keep the Pipe Full? 3

» Send multiple packets without
waiting for first to be acked
« Number of pkts in flight = window:
Flow control
* Reliable, unordered delivery
» Several parallel stop & waits
« Send new packet after each ack

« Sender keeps list of unack’ed packets;
resends after timeout

* Receiver same as stop & wait
* How large a window is needed?

4

Suppose 10Mbps link, 4ms delay,
500byte pkts

Sliding Window %

* Reliable, ordered delivery
* Receiver has to hold onto a packet until all prior
packets have arrived
* Why might this be difficult for just parallel stop & wait?
« Sender must prevent buffer overflow at receiver
 Circular buffer at sender and receiver
» Packets in transit < buffer size

» Advance when sender and receiver agree packets at
beginning have been received

- 1?7 10?7 20?
* Round trip delay * bandwidth =
capacity of pipe 18
L
Sender/Receiver State %
Sender Receiver
Max ACK received Next seqnum Next expected Max acceptable

STV L LT s 111 e

Sender window Receiver window

I Sent & Acked D Sent Not Acked I Received & Acked D Acceptable Packet

I OK to Send D Not Usable D Not Usable

20

Sequence Numbers N

* How large do sequence numbers need to be?
* Must be able to detect wrap-around
» Depends on sender/receiver window size
- E.g.
* Max seq = 7, send win=recv win=7
« If pkts 0..6 are sent succesfully and all acks lost
* Receiver expects 7,0..5, sender retransmits old 0..6!!!
» Max sequence must be = send window + recv window

21

Window Sliding — Common Case %

* On reception of new ACK (i.e. ACK for something that was
not acked earlier)
* Increase sequence of max ACK received
» Send next packet
» On reception of new in-order data packet (next expected)
* Hand packet to application

* Send cumulative ACK — acknowledges reception of all packets up
to sequence number

» Increase sequence of max acceptable packet

22

Loss Recovery N

* On reception of out-of-order packet

» Send nothing (wait for source to timeout)

» Cumulative ACK (helps source identify loss)
» Timeout (Go-Back-N recovery)

+ Set timer upon transmission of packet

» Retransmit all unacknowledged packets
» Performance during loss recovery

* No longer have an entire window in transit

+ Can have much more clever loss recovery

23

Important Lessons %

» Transport service
* UDP - mostly just IP service
» TCP - congestion controlled, reliable, byte stream
» Types of ARQ protocols
+ Stop-and-wait > slow, simple
* Go-back-n - can keep link utilized (except w/ losses)

+ Selective repeat > efficient loss recovery -- used in
SACK

* Sliding window flow control
» Addresses buffering issues and keeps link utilized

24

Good Ideas So Far... %

* Flow control

+ Sliding window
» Loss recovery
» Timeouts

» Acknowledgement-driven recovery (selective repeat or
cumulative acknowledgement)

25

Outline 5

» Transport introduction
* Error recovery & flow control

» TCP flow control/connection setup/data transfer

TCP reliability
» Congestion sources and collapse

» Congestion control basics

26

More on Sequence Numbers %

» 32 Bits, Unsigned - for bytes not packets!

* Why So Big?
+ For sliding window, must have
* |Sequence Space| > |Sending Window| + |Receiving
Window|
* No problem
» Also, want to guard against stray packets

» With IP, packets have maximum lifetime of 120s
» Sequence number would wrap around in this time at 286Mbps

27

TCP Flow Control 5

* TCP is a sliding window protocol

» For window size n, can send up to n bytes without
receiving an acknowledgement

* When the data is acknowledged then the window
slides forward

» Each packet advertises a window size

* Indicates number of bytes the receiver has space for
* Original TCP always sent entire window

» Congestion control now limits this

28

Window Flow Control: Send Side i‘.

window

Sent and acked | Sent but not acked

I

Next to be sent

29

Window Flow Control: Send Side i‘.

Packet Sent Packet Received
Dest. Port Dest. Port
Sequence Number
Acknowledgment

| HUFlags | Window "
| D. Checksum | Urgent pointer [0. Chegisum | Urgent Pointer
N optons../ [N/ Optons._______

App write
| | | }

acknowledged sent to be sent outside window

30

Performance Considerations “

* The window size can be controlled by receiving
application
» Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)
» The window size field in the TCP header limits the
window that the receiver can advertise
* 16 bits > 64 KBytes
* 10 msec RTT = 51 Mbit/second
* 100 msec RTT - 5 Mbit/second

» TCP options to get around 64KB limit - scales window
size

31

Establishing Connection: “

Three-Way handshake

» Each side notifies other of
starting sequence number it SYN: SeqC
will use for sending

* Why not simply chose 0?

* Must avoid overlap with earlier ACK: SeqC+1
incarnation SYN: SeqS
» Security issues
» Each side acknowledges ACK: SeqS+1

other’s sequence number
* SYN-ACK: Acknowledge
sequence number + 1
« Can combine second SYN ...,
with first ACK

Server

32

Outline 5

» Transport introduction
» Error recovery & flow control
» TCP flow control/connection setup/data transfer

* TCP reliability
» Congestion sources and collapse

» Congestion control basics

33

Reliability Challenges %

» Congestion related losses
» Variable packet delays

* What should the timeout be?
* Reordering of packets

* How to tell the difference between a delayed packet
and a lost one?

34

TCP = Go-Back-N Variant 5

+ Sliding window with cumulative acks

» Receiver can only return a single “ack” sequence number to
the sender.

» Acknowledges all bytes with a lower sequence number
 Starting point for retransmission
» Duplicate acks sent when out-of-order packet received
» But: sender only retransmits a single packet.
* Reason???
* Only one that it knows is lost
« Network is congested - shouldn’t overload it
» Error control is based on byte sequences, not
packets.

* Retransmitted packet can be different from the original lost
packet — Why?

35

Round-trip Time Estimation 5

Wait at least one RTT before retransmitting

+ Importance of accurate RTT estimators:

* Low RTT estimate
« unneeded retransmissions

* High RTT estimate
 poor throughput

* RTT estimator must adapt to change in RTT
* But not too fast, or too slow!
» Spurious timeouts

» “Conservation of packets” principle — never more than a
window worth of packets in flight

36

Original TCP Round-trip Estimator N

Round trip times 2

exponentially averaged:

* NewRTT =« (old RTT) +

(1 - a) (new sample) 15

* Recommended value for
a:0.8-0.9

» 0.875 for most TCP’s 05

» Retransmit timer set to (b * RTT), where b =2
« Every time timer expires, RTO exponentially backed-off
* Not good at preventing premature timeouts

37

RTT Sample Ambiguity %

A B A B
O

RTO

Original transmission

[RTO

Sample ret . Sample
RTT rans'hlss,bn RTT p I
pok

e Karn’s RTT Estimator

+ If a segment has been retransmitted:
» Don’t count RTT sample on ACKs for this segment
» Keep backed off time-out for next packet
» Reuse RTT estimate only after one successful transmission
38

Jacobson’s Retransmission Timeout 5

* Key observation:
+ At high loads round trip variance is high
+ Solution:

* Base RTO on RTT and standard deviation
* RTO =RTT + 4 * rttvar

* new_rttvar = § * dev + (1-) old_rttvar
* Dev = linear deviation

* Inappropriately named — actually smoothed linear
deviation

39

Timestamp Extension %

» Used to improve timeout mechanism by more
accurate measurement of RTT

* When sending a packet, insert current time into
option
* 4 bytes for time, 4 bytes for echo a received timestamp
* Receiver echoes timestamp in ACK
* Actually will echo whatever is in timestamp
* Removes retransmission ambiguity
« Can get RTT sample on any packet

40

10

Timer Granularity i‘.

* Many TCP implementations set RTO in multiples
of 200,500,1000ms
* Why?
 Avoid spurious timeouts — RTTs can vary quickly due to
cross traffic

» Reduce timer expensive timer interrupts on hosts
» What happens for the first couple of packets?
 Pick a very conservative value (seconds)

41

Fast Retransmit -- Avoiding Timeouts i‘.

* What are duplicate acks (dupacks)?
» Repeated acks for the same sequence
* When can duplicate acks occur?
* Loss
» Packet re-ordering
+ Window update — advertisement of new flow control window
» Assume re-ordering is infrequent and not of large
magnitude
« Use receipt of 3 or more duplicate acks as indication of loss
« Don’t wait for timeout to retransmit packet

42

Fast Retransmit “

|]
|]
|]
|]
|]
|]
|]
|]
|]
X " a .— Retransmission
Sequence No - o Duplicate Acks
| | o
L] o
| | o
L] o
| | o
|] o
|] o
|] o
|] o
|] o
|] o
|] o
Ml Packets
Acks -
© Time

43

TCP (Reno variant) i‘.

| |
| |
:
i L}
. ° Now what? - timeout
o =
|]] 0000
Sequence No = °
L} o
|] o
L} o
|]]
|] o
|] [e]
|] [e]
|] o
| | o
| | o
| | [
M Packets
OAcks Time

44

11

SACK Y

» Basic problem is that cumulative acks provide little
information
» Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
* Implemented as a TCP option

* Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

* When to retransmit?

« Still need to deal with reordering > wait for out of order
by 3pkts

45

Performance Issues 5

* Timeout >> fast rexmit

Need 3 dupacks/sacks

Not great for small transfers
» Don’t have 3 packets outstanding

* What are real loss patterns like?

47

SACK A
L]
| |
L)
%]
.
[]
1)
K =
- Now what? — send
X u retransmissions as soon
| | o 0000
Sequence No m ° as detected
= o
|] o
|]]
|]]
|] o
|] o
|] o
L} o
| | o
L] o
| | [
Wl Packets
OAcks
Time
46
L |
Important Lessons %

* Three-way TCP Handshake
e TCP timeout calculation - how is RTT estimated

* Modern TCP loss recovery
* Why are timeouts bad?
* How to avoid them? > e.g. fast retransmit

48

12

Outline i‘.

» Transport introduction

» Error recovery & flow control

» TCP flow control/connection setup/data transfer
« TCP reliability

» Congestion sources and collapse

» Congestion control basics

49

Congestion i‘

100 Mbps

 Different sources compete for resources
inside network

* Why is it a problem?
» Sources are unaware of current state of resource
» Sources are unaware of each other

* In many situations will result in < 1.5 Mbps of
throughput (congestion collapse)

Causes & Costs of Congestion “
* Four senders — multihop paths Q: What happens as rate
» Timeout/retransmit increases?

Host A Host 8
imEnnmn|
LI)
Host D —> R -
- R2 Egﬂ Host C
=1V i
E % s (D O
yanNEERINN]
(T

51

Causes & Costs of Congestion “.

C/Q Host A HE“?
-g Host D HEH /]
n_RI_I3_m I

- O
in
» When packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

=2

13

Congestion Collapse N

» Definition: Increase in network load results in
decrease of useful work done

* Many possible causes
+ Spurious retransmissions of packets still in flight
« Classical congestion collapse
* How can this happen with packet conservation
+ Solution: better timers and TCP congestion control
» Undelivered packets

» Packets consume resources and are dropped elsewhere in
network

+ Solution: congestion control for ALL traffic
 Etc..

53

Other Congestion Collapse Causes %

* Fragments
» Mismatch of transmission and retransmission units

» Solutions

* Make network drop all fragments of a packet (early packet
discard in ATM)

* Do path MTU discovery
» Control traffic
» Large percentage of traffic is for control
« Headers, routing messages, DNS, etc.
 Stale or unwanted packets
» Packets that are delayed on long queues
+ “Push” data that is never used

54

Where to Prevent Collapse? %

» Can end hosts prevent problem?
* Yes, but must trust end hosts to do right thing
» E.g., sending host must adjust amount of data it puts in
the network based on detected congestion
» Can routers prevent collapse?
* No, not all forms of collapse

» Doesn’t mean they can’t help
+ Sending accurate congestion signals
* Isolating well-behaved from ill-behaved sources

55

Congestion Control and Avoidance %

* A mechanism which:
» Uses network resources efficiently
* Preserves fair network resource allocation
* Prevents or avoids collapse
» Congestion collapse is not just a theory
» Has been frequently observed in many networks

56

14

Approaches For Congestion Control n

» Two broad approaches towards congestion control:

End-to-end

* No explicit feedback from

network

» Congestion inferred from
end-sys tem observed
loss, delay

* Approach taken by TCP

Network-assisted

* Routers provide feedback
to end systems

« Explicit rate sender should
send at

 Single bit indicating
congestion (SNA, DEC bit,
TCP/IP ECN, ATM)
* Problem: makes routers
complicated

57

Example: TCP Congestion Control

«

» Very simple mechanisms in network
» FIFO scheduling with shared buffer pool
« Feedback through packet drops

» TCP interprets packet drops as signs of congestion and

slows down

» This is an assumption: packet drops are not a sign of congestion in

all networks
» E.g. wireless networks

» Periodically probes the network to check whether more

bandwidth has become available.

58

Outline

«

* Transport introduction

* Error recovery & flow control

* TCP flow control/connection setup/data transfer

* TCP reliability

» Congestion sources and collapse

» Congestion control basics

59

Objectives

«

» Simple router behavior

» Distributedness

+ Efficiency: Xiee = 2Xi(t)

« Fairness: (Ex;)?/n(=x:?)

» Power: (throughput*/delay)

» Convergence: control system must be stable

60

15

Basic Control Model 5

e Let’'s assume window-based control

* Reduce window when congestion is perceived
* How is congestion signaled?
« Either mark or drop packets
* When is a router congested?
« Drop tail queues — when queue is full
» Average queue length — at some threshold
* Increase window otherwise
» Probe for available bandwidth — how?

61

Linear Control

» Many different possibilities for reaction to
congestion and probing

* Examine simple linear controls

* Window(t + 1) = a + b Window(t)

« Different aj/b; for increase and a /b, for decrease
» Supports various reaction to signals

* Increase/decrease additively

* Increased/decrease multiplicatively

* Which of the four combinations is optimal?

62

Phase plots N

» Simple way to visualize behavior of competing
connections over time

Fairness Line

User 2’s
Allocation
Xz

Efficiency Line

User 1’s Allocation x,

63

Phase plots

* What are desirable properties?
* What if flows are not equal?

Fairness Line

Overload
User 2’s
Allocation " "

X, "«——— Optimal point
Underutilization

Efficiency Line

User 1’s Allocation x,

64

16

Additive Increase/Decrease

"«

« Both X, and X, increase/decrease by the same amount

over time

+ Additive increase improves fairness and additive decrease reduces

fairness

User 2's

Fairness Line

Allocation To

X2

Efficiency Line

User 1’s Allocation x,

65

Multiplicative Increase/Decrease

«

» Both X, and X, increase by the same factor over time

+ Extension from origin — constant fairness

Fairness Line

User 2’s
Allocation
Xz

Efficiency Line

User 1’s Allocation x,

66

Convergence to Efficiency

«

User 2’s
Allocation
X

Fairness Line

.- Efficiency Line

User 1’s Allocation x;

67

Distributed Convergence to Efficiency

«

a=0
b=1 Fairness Line
xH
User 2’s o5
Allocation iS5
X3 N

Efficiency Line

User 1’s Allocation x;

68

17

Convergence to Fairness

"«

Convergence to Efficiency & Fairness i‘

Fairness Line

xH

User 2’s
Allocation
Xz

xH

Efficiency Line

User 1’s Allocation x,

70

Fairness Line
i
User 2’s
Allocation
Xz
Efficiency Line
User 1’s Allocation x,
69
Fairness Line
User 2’s
Allocation
X

Xt

Efficiency Line

User 1’s Allocation x;

71

Constraints “.

* Distributed efficiency
* l.e., = Window(t+1) > = Window(t) during increase
« 3, >08&b>1
+ Similarly, a;<0 &by <1
* Must never decrease fairness
* a&b'smustbe>0
* af/b,>0and ay/by>0
* Full constraints
*ay=0, 0<by<1,a>0andb;>1

72

18

What is the Right Choice? %

 Constraints limit us to AIMD
» Can have multiplicative term in increase (MAIMD)
* AIMD moves towards optimal point

Fairness Line

X4

User 2's
Allocation
X2

Efficiency Line

User 1’s Allocation x,

73

Questions x

» Fairness — why not support skew > AIMD/GAIMD
analysis

* More bits of feedback - DECbit, XCP, Vegas

* Guess # of users - hard in async system, look at
loss rate?

+ Stateless vs. stateful design
* Wired vs. wireless
* Non-linear controls - Bionomial

74

TCP Congestion Control %

» Congestion Control
« RED

» Assigned Reading

» [FJ93] Random Early Detection Gateways for
Congestion Avoidance

* [TFRC] Equation-Based Congestion Control for Unicast
Applications

75

19

