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15-744 Computer Networking 

Review 2 – Transport Protocols 

Announcements 

•  Project proposal 
•  Due 9/24 
•  Roughly 1/3 on each of problem statement, state-of-art, 

work plan/milestones 
•  ~1pg total 

•  HW1 
•  Out today, due 9/27 
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Outline 

•  Transport introduction 

•  Error recovery & flow control 

•  TCP flow control/connection setup/data transfer 

•  TCP reliability 

•  Congestion sources and collapse 

•  Congestion control basics 
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Transport Protocols 

•  Lowest level end-to-
end protocol. 
•  Header generated by 

sender is interpreted 
only by the destination 

•  Routers view transport 
header as part of the 
payload 

•  Not always true… 
•  Firewalls 
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Functionality Split 

•  Network provides best-effort delivery 
•  End-systems implement many functions 

•  Reliability 
•  In-order delivery 
•  Demultiplexing 
•  Message boundaries 
•  Connection abstraction 
•  Congestion control 
•  … 
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Transport Protocols 

•  UDP provides just integrity and demux 
•  TCP adds… 

•  Connection-oriented 
•  Reliable 
•  Ordered 
•  Byte-stream 
•  Full duplex 
•  Flow and congestion controlled 

•  DCCP, RTP, SCTP -- not widely used. 
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UDP: User Datagram Protocol [RFC 768] 

•  “No frills,” “bare bones” 
Internet transport 
protocol 

•  “Best effort” service, 
UDP segments may be: 
•  Lost 
•  Delivered out of order to 

app 

•  Connectionless: 
•  No handshaking between 

UDP sender, receiver 
•  Each UDP segment 

handled independently of 
others 

Why is there a UDP? 
•  No connection establishment 

(which can add delay) 
•  Simple: no connection state 

at sender, receiver 
•  Small header 
•  No congestion control: UDP 

can blast away as fast as 
desired 
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UDP, cont. 

•  Often used for 
streaming 
multimedia apps 
•  Loss tolerant 
•  Rate sensitive 

•  Other UDP uses 
(why?): 
•  DNS 

•  Reliable transfer 
over UDP 
•  Must be at 

application layer 
•  Application-specific 

error recovery 

Source port # Dest port # 

32 bits 

Application 
data  

(message) 

UDP segment format 

Length Checksum 
Length, in 

bytes of UDP 
segment, 
including 
header 
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UDP Checksum 

Sender: 
•  Treat segment contents as 

sequence of 16-bit integers 
•  Checksum: addition (1’s 

complement sum) of segment 
contents 

•  Sender puts checksum value 
into UDP checksum field 

Receiver: 
•  Compute checksum of 

received segment 
•  Check if computed checksum 

equals checksum field value: 
•  NO - error detected 
•  YES - no error detected 

 But maybe errors 
nonetheless?  

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment – optional use! 
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High-Level TCP Characteristics 

•  Protocol implemented entirely at the ends 
•  Fate sharing (on IP) 

•  Protocol has evolved over time and will continue 
to do so 
•  Nearly impossible to change the header 
•  Use options to add information to the header 
•  Change processing at endpoints 
•  Backward compatibility is what makes it TCP  
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TCP Header 

Source port Destination port 

Sequence number 

Acknowledgement 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Flags: SYN 
FIN 
RESET 
PUSH 
URG 
ACK 
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Evolution of TCP 

1975 1980 1985 1990 

1982 
TCP & IP 

RFC 793 & 791 

1974 
TCP described by 

Vint Cerf and Bob Kahn 
In IEEE Trans Comm 

1983 
BSD Unix 4.2 

supports TCP/IP 

1984 
Nagel’s algorithm 
to reduce overhead 

of small packets; 
predicts congestion 

collapse 

1987 
Karn’s algorithm 
to better estimate 

round-trip time 

1986 
Congestion 

collapse 
observed 

1988 
Van Jacobson’s 

algorithms 
congestion avoidance 
and congestion control 
(most implemented in 

4.3BSD Tahoe) 

1990 
4.3BSD Reno 
fast retransmit 
delayed ACK’s 

1975 
Three-way handshake 

Raymond Tomlinson 
In SIGCOMM 75 
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TCP Through the 1990s 

1993 1994 1996 

1994 
ECN 

(Floyd) 
Explicit  

Congestion 
Notification 

1993 
TCP Vegas  

(Brakmo et al) 
delay-based 

congestion avoidance 

1994 
T/TCP 

(Braden) 
Transaction 

TCP 

1996 
SACK TCP 
(Floyd et al) 
Selective 

Acknowledgement 

1996 
Hoe 

NewReno startup 
and loss recovery 

1996 
FACK TCP 

(Mathis et al) 
extension to SACK 

Outline 

•  Transport introduction 

•  Error recovery & flow control 

•  TCP flow control/connection setup/data transfer 

•  TCP reliability 

•  Congestion sources and collapse 

•  Congestion control basics 
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Stop and Wait 

•  ARQ 
•  Receiver sends 

acknowledgement (ACK) 
when it receives packet 

•  Sender waits for ACK and 
timeouts if it does not 
arrive within some time 
period 

•  Simplest ARQ protocol 
•  Send a packet, stop and 

wait until ACK arrives 
•  Performance 

•  Can only send one 
packet per round trip 
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Recovering from Error 
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ACK lost Packet lost Early timeout 
DUPLICATE 
PACKETS!!! 
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How to Recognize Resends? 

•  Use sequence numbers 
•  both packets and acks 

•  Sequence # in packet is finite 
 How big should it be?  
•  For stop and wait? 

•  One bit – won’t send seq #1 
until received ACK for seq #0 

Pkt 0 

ACK 0 

Pkt 0 

ACK 1 

Pkt 1 ACK 0 
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How to Keep the Pipe Full? 

•  Send multiple packets without 
waiting for first to be acked 
•  Number of pkts in flight = window:  

Flow control 
•  Reliable, unordered delivery 

•  Several parallel stop & waits 
•  Send new packet after each ack 
•  Sender keeps list of unack’ed packets; 

resends after timeout 
•  Receiver same as stop & wait 

•  How large a window is needed? 
•  Suppose 10Mbps link, 4ms delay, 

500byte pkts 
•  1? 10? 20? 

•  Round trip delay * bandwidth = 
capacity of pipe 
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Sliding Window 

•  Reliable, ordered delivery 
•  Receiver has to hold onto a packet until all prior 

packets have arrived 
•  Why might this be difficult for just parallel stop & wait? 
•  Sender must prevent buffer overflow at receiver 

•  Circular buffer at sender and receiver 
•  Packets in transit ≤ buffer size  
•  Advance when sender and receiver agree packets at 

beginning have been received 
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Receiver Sender 

Sender/Receiver State 

… … 

Sent & Acked Sent Not Acked 

OK to Send Not Usable 

… … 

Max acceptable 

Receiver window  

Max ACK received Next seqnum 

Received & Acked Acceptable Packet 

Not Usable 

Sender window 

Next expected 
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Sequence Numbers 

•  How large do sequence numbers need to be? 
•  Must be able to detect wrap-around 
•  Depends on sender/receiver window size 

•  E.g. 
•  Max seq = 7, send win=recv win=7 
•  If pkts 0..6 are sent succesfully and all acks lost 

•  Receiver expects 7,0..5, sender retransmits old 0..6!!! 

•  Max sequence must be ≥ send window + recv window 
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Window Sliding – Common Case 

•  On reception of new ACK (i.e. ACK for something that was 
not acked earlier) 
•  Increase sequence of max ACK received 
•  Send next packet 

•  On reception of new in-order data packet (next expected) 
•  Hand packet to application 
•  Send cumulative ACK – acknowledges reception of all packets up 

to sequence number 
•  Increase sequence of max acceptable packet 
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Loss Recovery 

•  On reception of out-of-order packet 
•  Send nothing (wait for source to timeout) 
•  Cumulative ACK (helps source identify loss) 

•  Timeout (Go-Back-N recovery) 
•  Set timer upon transmission of packet 
•  Retransmit all unacknowledged packets 

•  Performance during loss recovery 
•  No longer have an entire window in transit 
•  Can have much more clever loss recovery 
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Important Lessons 

•  Transport service 
•  UDP  mostly just IP service 
•  TCP  congestion controlled, reliable, byte stream 

•  Types of ARQ protocols 
•  Stop-and-wait  slow, simple 
•  Go-back-n  can keep link utilized (except w/ losses) 
•  Selective repeat  efficient loss recovery -- used in 

SACK 
•  Sliding window flow control 

•  Addresses buffering issues and keeps link utilized 
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Good Ideas So Far… 

•  Flow control 
•  Stop & wait 
•  Parallel stop & wait 
•  Sliding window 

•  Loss recovery 
•  Timeouts 
•  Acknowledgement-driven recovery (selective repeat or 

cumulative acknowledgement) 

Outline 

•  Transport introduction 

•  Error recovery & flow control 

•  TCP flow control/connection setup/data transfer 

•  TCP reliability 

•  Congestion sources and collapse 

•  Congestion control basics 
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More on Sequence Numbers 

•  32 Bits, Unsigned  for bytes not packets! 

•  Why So Big? 
•  For sliding window, must have  
•    |Sequence Space| > |Sending Window| + |Receiving 

Window| 
•  No problem 

•  Also, want to guard against stray packets  
•  With IP, packets have maximum lifetime of 120s 
•  Sequence number would wrap around in this time at 286Mbps 
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TCP Flow Control 

•  TCP is a sliding window protocol 
•  For window size n, can send up to n bytes without 

receiving an acknowledgement  
•  When the data is acknowledged then the window 

slides forward 
•  Each packet advertises a window size 

•  Indicates number of bytes the receiver has space for 
•  Original TCP always sent entire window 

•  Congestion control now limits this 
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Window Flow Control: Send Side 

Sent but not acked Not yet sent 

window 

Next to be sent 

Sent and acked 
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acknowledged sent to be sent outside window 

Source Port Dest. Port 
Sequence Number 
Acknowledgment 

HL/Flags Window 
D. Checksum Urgent Pointer 

Options… 

Source Port Dest. Port 
Sequence Number 
Acknowledgment 

HL/Flags Window 
D. Checksum Urgent Pointer 

Options... 

Packet Sent Packet Received 

App write 

Window Flow Control: Send Side 
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Performance Considerations 

•  The window size can be controlled by receiving 
application 
•  Can change the socket buffer size from a default (e.g. 

8Kbytes) to a maximum value (e.g. 64 Kbytes) 
•  The window size field in the TCP header limits the 

window that the receiver can advertise 
•  16 bits  64 KBytes 
•  10 msec RTT  51 Mbit/second 
•  100 msec RTT  5 Mbit/second 
•  TCP options to get around 64KB limit  scales window 

size 
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Establishing Connection: 
Three-Way handshake 

•  Each side notifies other of 
starting sequence number it 
will use for sending 
•  Why not simply chose 0? 

•  Must avoid overlap with earlier 
incarnation 

•  Security issues 

•  Each side acknowledges 
other’s sequence number 
•  SYN-ACK: Acknowledge 

sequence number + 1 
•  Can combine second SYN 

with first ACK 

SYN: SeqC!

ACK: SeqC+1!
SYN: SeqS!

ACK: SeqS+1!

Client! Server!
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Outline 

•  Transport introduction 

•  Error recovery & flow control 

•  TCP flow control/connection setup/data transfer 

•  TCP reliability 

•  Congestion sources and collapse 

•  Congestion control basics 
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Reliability Challenges 

•  Congestion related losses 
•  Variable packet delays 

•  What should the timeout be? 
•  Reordering of packets 

•  How to tell the difference between a delayed packet 
and a lost one? 

TCP = Go-Back-N Variant 

•  Sliding window with cumulative acks 
•  Receiver can only return a single “ack” sequence number to 

the sender. 
•  Acknowledges all bytes with a lower sequence number 
•  Starting point for retransmission 
•  Duplicate acks sent when out-of-order packet received  

•  But: sender only retransmits a single packet. 
•  Reason??? 

•  Only one that it knows is lost 
•  Network is congested  shouldn’t overload it 

•  Error control is based on byte sequences, not 
packets. 
•  Retransmitted packet can be different from the original lost 

packet – Why? 
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Round-trip Time Estimation 

•  Wait at least one RTT before retransmitting 
•  Importance of accurate RTT estimators: 

•  Low  RTT estimate 
•  unneeded retransmissions 

•  High RTT estimate 
•  poor throughput 

•  RTT estimator must adapt to change in RTT 
•  But not too fast, or too slow! 

•  Spurious timeouts 
•  “Conservation of packets” principle – never more than a 

window worth of packets in flight 
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Original TCP Round-trip Estimator 

•  Round trip times 
exponentially averaged: 
•  New RTT = α (old RTT) + 

(1 - α) (new sample) 
•  Recommended value for 

α: 0.8 - 0.9 
•  0.875 for most TCP’s 

0

0.5

1

1.5

2

2.5

•  Retransmit timer set to (b * RTT), where b = 2 
•  Every time timer expires, RTO exponentially backed-off 

•  Not good at preventing premature timeouts 
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RTT Sample Ambiguity 

•  Karn’s RTT Estimator 
•  If a segment has been retransmitted: 

•  Don’t count RTT sample on ACKs for this segment 
•  Keep backed off time-out for next packet 
•  Reuse RTT estimate only after one successful transmission 

A B 

ACK 

Sample 
RTT 

Original transmission 

retransmission 

RTO 

A B 
Original transmission 

retransmission 
Sample 
RTT 

ACK RTO 
X 
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Jacobson’s Retransmission Timeout 

•  Key observation: 
•  At high loads round trip variance is high 

•  Solution: 
•  Base RTO on RTT and standard deviation 

•  RTO = RTT + 4 * rttvar 

•  new_rttvar = β * dev + (1- β) old_rttvar 
•  Dev = linear deviation  
•  Inappropriately named – actually smoothed linear 

deviation 
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Timestamp Extension 

•  Used to improve timeout mechanism by more 
accurate measurement of RTT 

•  When sending a packet, insert current time into 
option 
•  4 bytes for time, 4 bytes for echo a received timestamp 

•  Receiver echoes timestamp in ACK 
•  Actually will echo whatever is in timestamp 

•  Removes retransmission ambiguity 
•  Can get RTT sample on any packet 
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Timer Granularity 

•  Many TCP implementations set RTO in multiples 
of 200,500,1000ms 

•  Why? 
•  Avoid spurious timeouts – RTTs can vary quickly due to 

cross traffic 
•  Reduce timer expensive timer interrupts on hosts 

•  What happens for the first couple of packets? 
•  Pick a very conservative value (seconds) 
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Fast Retransmit -- Avoiding Timeouts 

•  What are duplicate acks (dupacks)? 
•  Repeated acks for the same sequence 

•  When can duplicate acks occur? 
•  Loss 
•  Packet re-ordering 
•  Window update – advertisement of new flow control window 

•  Assume re-ordering is infrequent and not of large 
magnitude 
•  Use receipt of 3 or more duplicate acks as indication of loss 
•  Don’t wait for timeout to retransmit packet 

43 

Fast Retransmit 

Time 

Sequence No Duplicate Acks 

Retransmission X 

Packets 

Acks 
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TCP (Reno variant) 

Time 

Sequence No 
X 

X 

X X 

Now what? - timeout 

Packets 

Acks 
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SACK 

•  Basic problem is that cumulative acks provide little 
information 

•  Selective acknowledgement (SACK) essentially 
adds a bitmask of packets received  
•  Implemented as a TCP option 
•  Encoded as a set of received byte ranges (max of 4 

ranges/often max of 3) 
•  When to retransmit? 

•  Still need to deal with reordering  wait for out of order 
by 3pkts 
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SACK  

Time 

Sequence No 
X 

X 

X X 

Now what? – send 
retransmissions as soon 
as detected 

Packets 

Acks 
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Performance Issues 

•  Timeout >> fast rexmit 

•  Need 3 dupacks/sacks 

•  Not great for small transfers 
•  Don’t have 3 packets outstanding 

•  What are real loss patterns like? 
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Important Lessons 

•  Three-way TCP Handshake 
•  TCP timeout calculation  how is RTT estimated 

•  Modern TCP loss recovery 
•  Why are timeouts bad? 
•  How to avoid them?  e.g. fast retransmit 
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Outline 

•  Transport introduction 

•  Error recovery & flow control 

•  TCP flow control/connection setup/data transfer 

•  TCP reliability 

•  Congestion sources and collapse 

•  Congestion control basics 
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Congestion 

•  Different sources compete for resources 
inside network 

•  Why is it a problem? 
•  Sources are unaware of current state of resource 
•  Sources are unaware of each other 
•  In many situations will result in < 1.5 Mbps of 

throughput (congestion collapse) 

10 Mbps 

100 Mbps 

1.5 Mbps 
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Causes & Costs of Congestion 

•  Four senders – multihop paths 
•  Timeout/retransmit 

Q: What happens as rate     
increases? 
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Causes & Costs of Congestion 

•  When packet dropped, any “upstream 
transmission capacity used for that packet 
was wasted! 
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Congestion Collapse 

•  Definition: Increase in network load results in 
decrease of useful work done 

•  Many possible causes 
•  Spurious retransmissions of packets still in flight 

•  Classical congestion collapse 
•  How can this happen with packet conservation 
•  Solution: better timers and TCP congestion control 

•  Undelivered packets 
•  Packets consume resources and are dropped elsewhere in 

network 
•  Solution: congestion control for ALL traffic 

•  Etc.. 
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Other Congestion Collapse Causes 

•  Fragments 
•  Mismatch of transmission and retransmission units 
•  Solutions 

•  Make network drop all fragments of a packet (early packet 
discard in ATM) 

•  Do path MTU discovery 

•  Control traffic 
•  Large percentage of traffic is for control 

•  Headers, routing messages, DNS, etc. 

•  Stale or unwanted packets 
•  Packets that are delayed on long queues 
•  “Push” data that is never used 
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Where to Prevent Collapse? 

•  Can end hosts prevent problem? 
•  Yes, but must trust end hosts to do right thing 
•  E.g., sending host must adjust amount of data it puts in 

the network based on detected congestion 
•  Can routers prevent collapse? 

•  No, not all forms of collapse 
•  Doesn’t mean they can’t help  

•  Sending accurate congestion signals 
•  Isolating well-behaved from ill-behaved sources 
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Congestion Control and Avoidance 

•  A mechanism which: 
•  Uses network resources efficiently 
•  Preserves fair network resource allocation 
•  Prevents or avoids collapse 

•  Congestion collapse is not just a theory 
•  Has been frequently observed in many networks 
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Approaches For Congestion Control 

End-to-end 

•  No explicit feedback from 
network 

•  Congestion inferred from 
end-sys     tem observed 
loss, delay 

•  Approach taken by TCP 

Network-assisted 

•  Routers provide feedback 
to end systems 
•  Explicit rate sender should 

send at 
•  Single bit indicating 

congestion (SNA, DEC bit, 
TCP/IP ECN, ATM) 

•  Problem: makes routers 
complicated 
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•  Two broad approaches towards congestion control: 
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Example: TCP Congestion Control 

•  Very simple mechanisms in network 
•  FIFO scheduling with shared buffer pool 
•  Feedback through packet drops 

•  TCP interprets packet drops as signs of congestion and 
slows down 

•  This is an assumption: packet drops are not a sign of congestion in 
all networks 

•  E.g. wireless networks 

•  Periodically probes the network to check whether more 
bandwidth has become available. 

Outline 

•  Transport introduction 

•  Error recovery & flow control 

•  TCP flow control/connection setup/data transfer 

•  TCP reliability 

•  Congestion sources and collapse 

•  Congestion control basics 
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Objectives 

•  Simple router behavior  
•  Distributedness 
•  Efficiency: Xknee = Σxi(t) 
•  Fairness: (Σxi)2/n(Σxi

2) 

•  Power: (throughputα/delay) 
•  Convergence: control system must be stable 
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Basic Control Model 

•  Let’s assume window-based control 
•  Reduce window when congestion is perceived 

•  How is congestion signaled? 
•  Either mark or drop packets 

•  When is a router congested? 
•  Drop tail queues – when queue is full 
•  Average queue length – at some threshold 

•  Increase window otherwise 
•  Probe for available bandwidth – how? 
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Linear Control 

•  Many different possibilities for reaction to 
congestion and probing 
•  Examine simple linear controls 
•  Window(t + 1) = a + b Window(t) 
•  Different ai/bi for increase and ad/bd for decrease 

•  Supports various reaction to signals 
•  Increase/decrease additively 
•  Increased/decrease multiplicatively 
•  Which of the four combinations is optimal? 
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Phase plots 

•  Simple way to visualize behavior of competing 
connections over time 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 
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Phase plots 

•  What are desirable properties? 
•  What if flows are not equal? 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 
Optimal point 

Overload 

Underutilization 
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Additive Increase/Decrease 

•  Both X1 and X2 increase/decrease by the same amount 
over time 
•  Additive increase improves fairness and additive decrease reduces 

fairness 

65 

T0 

T1 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 

Multiplicative Increase/Decrease 

•  Both X1 and X2 increase by the same factor over time 
•  Extension from origin – constant fairness 
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T0 

T1 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 
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Convergence to Efficiency 

xH 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 
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Distributed Convergence to Efficiency 

xH 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 

a=0 

b=1 
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Convergence to Fairness 

xH 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 

xH’ 
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Convergence to Efficiency & Fairness 

xH 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 

xH’ 
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Increase 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 

xL 
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Constraints 

•  Distributed efficiency 
•  I.e., Σ Window(t+1) > Σ Window(t) during increase 

•  ai  > 0 & bi ≥ 1 
•  Similarly, ad < 0 & bd ≤ 1 

•  Must never decrease fairness 
•  a & b’s must be ≥ 0 
•  ai/bi > 0 and ad/bd ≥ 0 

•  Full constraints 
•  ad = 0,  0 ≤ bd < 1, ai > 0 and bi ≥ 1 
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What is the Right Choice? 

•  Constraints limit us to AIMD 
•  Can have multiplicative term in increase (MAIMD) 
•  AIMD moves towards optimal point 
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x0 

x1 

x2 

Efficiency Line 

Fairness Line 

User 1’s Allocation x1 

User 2’s 
Allocation 

x2 

Questions 

•  Fairness – why not support skew  AIMD/GAIMD 
analysis 

•  More bits of feedback  DECbit, XCP, Vegas 
•  Guess # of users  hard in async system, look at 

loss rate? 
•  Stateless vs. stateful design 
•  Wired vs. wireless 
•  Non-linear controls  Bionomial 
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TCP Congestion Control  

•  Congestion Control 
•  RED 

•  Assigned Reading 
•  [FJ93] Random Early Detection Gateways for 

Congestion Avoidance 
•  [TFRC] Equation-Based Congestion Control for Unicast 

Applications 


